首页> 外文学位 >Quantum cascade lasers in high magnetic fields.
【24h】

Quantum cascade lasers in high magnetic fields.

机译:强磁场中的量子级联激光器。

获取原文
获取原文并翻译 | 示例

摘要

The frontier of the rapidly emerging field of nano-optoelectronics relies on the understanding and control of intersubband transitions in low-dimensional systems. The continual search for new optoelectronics concepts and materials (including, but not limited to, III-V semiconductors, nitrides, and Si/Ge) has resulted in a rapid expansion of the field of intersubband physics and quantum cascade devices.;This dissertation concerns the experimental study of MIR and THz QC structures in high magnetic fields. Because of the similar energy and size scales of the spatial and magnetic confinements, the application of an external magnetic field offers a unique experimental tool to control and understand the most basic processes determining the performance of QC nanostructures: quantum confinement and intersubband relaxation. Specific issues addressed in this thesis are (i) mechanisms of intersubband electron relaxation, including electron-phonon, electron-electron, and interface effects; (ii) intersubband transitions in the effective zero-dimensional system ("magnetic" quantum box system); and (iii) intersubband radiative transitions in tilted magnetic fields.;First we present detailed studies of GaAs/AlGaAs and GaInAs/AlInAs mid-IR QCLs. By comparing the experimental data and the model of the electron lifetime in the presence of a strong magnetic field, the lifetimes of the elastic and inelastic scattering processes are determined. Ultimately this results in the development (formulation) of a new powerful spectroscopic tool to study the scattering mechanisms in QC structures---intersubband magneto-spectroscopy.;Secondly, a study of InAs/AlSb mid-IR QC structures is performed. By applying the method of the intersubband magneto-spectroscopy, we directly measured the quantum efficiency of intersubband processes in a model two-level system, and then obtain electron lifetimes of the upper-state of the radiative transition.;A quantum cascade (QC) structure is a general concept of an optoelectronic device (laser, LED, frequency mixer, or detector) based on a cascade of radiative transitions between size-quantized energy levels in a multi-quantum-well structure. Today, Quantum Cascade Lasers (QCL), which are the only semiconductor devices operating from the mid-infrared (MIR) to the THz range of frequencies, represent one of the most striking outcomes of intersubband structure engineering, and provide a state-of-the-art model structure to study the basic properties of low-dimensional semiconductor systems.;Thirdly, GaAs/AlGaAs THz QCLs are studied. Here, a magnetic field was used as a tool to controllably transform a 2D multi-QW structure into effective 0D system with reduced (eventually quenched) non-radiative intersubband scattering. This allowed us to achieve laser emission from a single device in an unprecedented range of frequencies from 0.68 THz to 3.33 THz. Moreover, the device shows 1 THz lasing at temperatures up to 215 K, and 3 THz lasing up to 225 K. This is the longest wavelength, the widest spectral coverage, and the highest operational temperatures of any single THz solid state laser to date.;The last chapter discusses QCL angular-resolved magneto-spectroscopy. At tilted magnetic fields, additional optical transitions, never observed in QC structures, are allowed as a result of the intersubband-cyclotron coupling. Also, angular field measurements are an effective tool to study the effects related to cyclotron- and spin-splitting phenomena. Here we demonstrated the feasibility of QCL angular measurements at high magnetic fields, and discuss the first results.
机译:迅速发展的纳米光电领域的前沿取决于对低维系统中子带间跃迁的理解和控制。不断寻求新的光电概念和材料(包括但不限于III-V半导体,氮化物和Si / Ge)已导致子带间物理和量子级联器件领域的快速扩展。高磁场中的MIR和THz QC结构的实验研究。由于空间和磁场限制的能量和尺寸尺度相似,外部磁场的应用提供了独特的实验工具来控制和理解决定QC纳米结构性能的最基本过程:量子限制和子带间弛豫。本文研究的具体问题是:(i)子带间电子弛豫的机理,包括电子声子,电子和界面效应; (ii)有效零维系统(“磁性”量子盒系统)中的子带间过渡;首先,我们对GaAs / AlGaAs和GaInAs / AlInAs中红外QCL进行了详细的研究。通过比较实验数据和在强磁场存在下的电子寿命模型,可以确定弹性和非弹性散射过程的寿命。最终,这导致了一种新的强大的光谱学工具的开发(制定),该工具用于研究QC结构中的散射机理-子带间磁谱。其次,对InAs / AlSb中红外QC结构进行了研究。通过使用子带间电磁光谱法,我们直接在模型两级系统中测量了子带间过程的量子效率,然后获得了辐射跃迁的上态电子寿命。量子级联(QC)结构是基于多量子阱结构中尺寸量化的能级之间的辐射跃迁的级联的光电设备(激光,LED,混频器或检测器)的一般概念。如今,量子级联激光器(QCL)是工作在中红外(MIR)至THz频率范围内的唯一半导体器件,代表了子带间结构工程最引人注目的成果之一,并提供了一种状态第三,对GaAs / AlGaAs THz QCLs进行了研究。在这里,磁场被用作一种工具,可控地将2D多重QW结构转换为有效的0D系统,该系统具有减少的(最终淬灭的)非辐射子带间散射。这使我们能够从单个设备以0.68 THz至3.33 THz的空前频率范围实现激光发射。此外,该设备在高达215 K的温度下显示1 THz激光,而在高达225 K的温度下显示3 THz激光。这是迄今为止任何单个THz固态激光器中最长的波长,最宽的光谱覆盖范围和最高的工作温度。 ;最后一章讨论了QCL角分辨磁谱。在倾斜的磁场下,由于子带-回旋加速器耦合,允许在QC结构中从未观察到的其他光学跃迁。同样,角场测量也是研究回旋加速器和自旋分裂现象相关影响的有效工具。在这里,我们证明了在高磁场下进行QCL角度测量的可行性,并讨论了第一个结果。

著录项

  • 作者

    Wade, Aaron.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号