首页> 外文学位 >Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls.
【24h】

Nanowire Tunnel Field Effect Transistors: Prospects and Pitfalls.

机译:纳米线隧道场效应晶体管:前景与陷阱。

获取原文
获取原文并翻译 | 示例

摘要

The tunnel field effect transistor (TFET) has the potential to operate at lower voltages and lower power than the field effect transistor (FET). The TFET can circumvent the fundamental thermal limit of the inverse subthreshold slope (S) by exploiting interband tunneling of non-equilibrium "cold" carriers. The conduction mechanism in the TFET is governed by band-to-band tunneling which limits the drive current. TFETs built with III-V materials like InAs and InSb can produce enough tunneling current because of their small direct bandgap. Our simulation results show that although they require highly degenerate source doping to support the high electric fields in the tunnel region, the devices achieve minimum inverse subthreshold slopes of 30 mV/dec. In subthreshold, these devices experience both regimes of voltage-controlled tunneling and cold-carrier injection. Numerical results based on a discretized 8-band k.p model are compared to analytical WKB theory.;For both regular FETs and TFETs, direct channel tunneling dominates the leakage current when the physical gate length is reduced to 5 nm. Therefore, a survey of materials is performed to determine their ability to suppress the direct tunnel current through a 5 nm barrier. The tunneling effective mass gives the best indication of the relative size of the tunnel currents. Si gives the lowest overall tunnel current for both the conduction and valence band and, therefore, it is the optimum choice for suppressing tunnel current at the 5 nm scale.;Our numerical simulation shows that the finite number, random placement, and discrete nature of the dopants in the source of an InAs nanowire (NW) TFET affect both the mean value and the variance of the drive current and the inverse subthreshold slope. The discrete doping model gives an average drive current and an inverse subthreshold slope that are less than those predicted from the homogeneous doping model. The doping density required to achieve a target drive current is higher in the discrete doping model compared to the homogeneous doping model. The relative variation in the ON current decreases as the average doping density and/or NW diameter increases. For the largest 8 nm NW studied, the coefficient of variation in the ON current is ∼15% at a doping density of 1.5 x 1020 cm--3. Results from full self-consistent non-equilibrium Green's function calculations and semi-classical calculations are compared.
机译:隧道场效应晶体管(TFET)具有比场效应晶体管(FET)更低的电压和更低的功率运行的潜力。通过利用非平衡“冷”载流子的带间隧穿,TFET可以绕过逆亚阈值斜率(S)的基本热极限。 TFET中的导通机制由限制驱动电流的带间隧道控制。用III-V材料(例如InAs和InSb)制造的TFET可以产生足够的隧道电流,因为它们的直接带隙很小。我们的仿真结果表明,尽管它们需要高度简并的源极掺杂来支持隧道区域中的高电场,但这些器件仍能实现最小反向亚阈值斜率30 mV / dec。在阈值以下,这些器件会经历电压控制隧穿和冷载流子注入两种状态。将基于离散化的8波段k.p模型的数值结果与解析WKB理论进行了比较。对于常规FET和TFET,当物理栅极长度减小到5 nm时,直接沟道隧穿控制了泄漏电流。因此,需要对材料进行调查以确定其抑制通过5 nm势垒的直接隧道电流的能力。隧穿有效质量最好地表明了隧道电流的相对大小。 Si给出了导带和价带上最低的总隧道电流,因此,它是抑制5 nm规模的隧道电流的最佳选择。 InAs纳米线(NW)TFET的源极中的掺杂剂会影响驱动电流的均值和方差以及反阈值下限。离散掺杂模型给出的平均驱动电流和反亚阈值斜率小于均质掺杂模型所预测的斜率。与均质掺杂模型相比,离散掺杂模型中实现目标驱动电流所需的掺杂密度更高。随着平均掺杂密度和/或NW直径的增加,导通电流的相对变化减小。对于研究的最大8 nm NW,在1.5 x 1020 cm--3的掺杂密度下,ON电流的变化系数约为15%。比较了完全自洽非平衡格林函数计算和半经典计算的结果。

著录项

  • 作者

    Sylvia, Somaia Sarwat.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:53:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号