首页> 外文学位 >Carbon incorporation pathways and lattice site distributions in silicon carbide/silicon(001) and germanium carbide/germanium(001) alloys grown by molecular beam epitaxy.
【24h】

Carbon incorporation pathways and lattice site distributions in silicon carbide/silicon(001) and germanium carbide/germanium(001) alloys grown by molecular beam epitaxy.

机译:通过分子束外延生长的碳化硅/硅(001)和碳化锗/锗(001)合金中的碳结合途径和晶格位点分布。

获取原文
获取原文并翻译 | 示例

摘要

In this research, C lattice site distributions in Si1−yC y/Si(001) and Ge1−yCy/Ge(001) layers grown by molecular beam epitaxy (MBE) were determined in order to develop an understanding of C incorporation pathways as a function of layer deposition conditions.; Fully-coherent Si1−yCy alloy layers were grown on Si(001) at temperatures Ts of 380 to 680°C with C fractions y ≤ 0.026. Si1−yCy(001) layers deposited at Ts 580°C are highly perfect single-crystals as judged by plan-view and cross-sectional transmission electron microscopy (TEM and XTEM) with all C, irrespective of alloy composition, incorporated in substitutional lattice sites as determined from strain and Raman spectroscopy measurements.; Epitaxial metastable Ge1−yCy(001) alloy layers with y ≤ 0.045 were grown on Ge(001) by MBE at Ts = 200–400°C. Using calculated strain coefficients and measured layer strains obtained from high-resolution reciprocal lattice maps (HR-RLMs), I determined C lattice site distributions as a function of Ts and the total C concentration y. HR-RLMs show that as-deposited alloys are fully-coherent with their substrates. All films contain C in both substitutional sites, giving rise to tensile strain, and nanocluster sites which induce negligible lattice strain.; Annealing Ge1−yCy(001) layers at 550°C leads to a significant decrease in ξsub and, hence, in tensile strain while 650°C annealed layers are strain- and defect-free as all substitutional C migrates to lower-energy nanocluster sites.; The key results of this research can be summarized as follows: (1) In Si1−yCy/Si(001), alloys, I find that all C incorporates in substitutional sites at Ts 580°C with y ≤ 0.026. At Ts ≥ 580°C, increasing y and Ts leads to increase in the fraction of dicarbon complexes and the formation of periodic bulk planar structures consisting of ordered Si4C layers which form as a result of C surface segregation. (2) In contrast to Si1−yC y/Si(001), I find that irrespective of y and Ts values, complete substitutional C incorporation in Ge1−yCy/Ge(001) is not possible. A fraction of the total C concentration is always incorporated in nanoclusters. Increasing y and/or Ts leads to an increase in the fraction of C in nanoclusters due to a higher C-C encounter probability at the growth surface. (Abstract shortened by UMI.)
机译:在这项研究中,Si 1-y C y / Si(001)和Ge 1-y C 中的C晶格位点分布确定通过分子束外延(MBE)生长的y / sub / Ge(001)层,以加深对C掺入途径随层沉积条件的影响。在380℃至680℃的温度T s 下,在Si(001)上生长全相干Si 1-y C y 合金层C分数y≤0.026。 T s <580°C沉积的Si 1-y C y (001)层是高度完美的单晶,通过平面图判断-观察和横截面透射电子显微镜(TEM和XTEM),所有C,不考虑合金成分,都结合到由应变和拉曼光谱测量确定的替代晶格位点中。 y≤0.045的外延亚稳Ge 1-y C y (001)合金层通过MBE在T s 的Ge(001)上生长= 200–400°C。使用从高分辨率的倒易晶格图(HR-RLM)获得的计算的应变系数和测得的层应变,我确定了C晶格位点分布与T s 和总C浓度y的关系。 HR-RLMs显示,沉积后的合金与其基底完全粘合。所有的膜在两个取代位点都含有C,这会引起拉伸应变,而纳米团簇的位点则可以忽略不计的晶格应变。在550°C退火Ge 1-y C y (001)层会导致ξ sub 的显着降低,从而导致拉伸应变,而650°C的退火层则无应变和无缺陷,因为所有取代C均迁移至能量较低的纳米簇位置。这项研究的主要结果可以概括如下:(1)在Si 1-y C y / Si(001)合金中,我发现所有C在T s <580°C且y≤0.026的取代位上。在T s ≥580°C时,增加y和T s 会导致二碳配合物的分数增加,并形成由有序Si 4 C层。 (2)与Si 1-y C y / Si(001)相比,我发现无论y和T s 的值如何,在Ge 1-y C y / Ge(001)中不可能完全取代C并入。总C浓度的一小部分总是掺入纳米团簇中。 y和/或T s 的增加会导致纳米团簇中C的比例增加,这是由于在生长表面的C-C遭遇概率更高。 (摘要由UMI缩短。)

著录项

  • 作者

    Park, Se-Yang.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号