首页> 外文学位 >Growth of III-nitrides by molecular beam epitaxy for heterojunction field effect transistors and optoelectronic applications.
【24h】

Growth of III-nitrides by molecular beam epitaxy for heterojunction field effect transistors and optoelectronic applications.

机译:通过分子束外延生长III型氮化物,用于异质结场效应晶体管和光电应用。

获取原文
获取原文并翻译 | 示例

摘要

Group III-nitride semiconductors, aluminum nitride (AlN), gallium nitride (GaN), and Indium nitride (InN) have emerged as the next generation materials especially for the development of blue/UV range light emitter or detector and high power high frequency electronic devices, thanks to their large band gap (except InN) and unique materials properties such as large polarizations.; In this research, Molecular Beam Epitaxy (MBE) growth techniques for group III-nitride semiconductors (especially GaN and AlGaN) have been developed with RF nitrogen plasma source. Research concentration was given to growth of AlGaN/GaN heterojunction field effect transistors (HFETs) and development of n- and p-type doping techniques for GaN and AlGaN.; High Quality GaN films were obtained by employing low temperature nitridation of sapphire, AIN nucleation layer, and Ga rich growth condition. Over 1000 cm2Ns electron mobility were routinely obtained in 2 dimensional electron gas of AlGaN/GaN structure with sheet electron density, ∼1.0 x 10-3 cm-2. Heterojunction field effect transistors having 0.3mum x 100mum T-shaped gates were fabricated on one of the MBE grown AIGaN/GaN structures, which exhibited 800 mA/mm DC full channel current and 0.8 W/mm saturated output power density of at 8 GHz in class A operation. Breakdown voltage and cutoff frequency (ftau ) of this HFET were measured to be 60 V and 44.6 GHz respectively.; The maximum channel current at 3 GHz was limited to only half of DC current due to RF dispersion, but a thin AlN passivation layer deposited by RF plasma induced molecular beam epitaxy on the surface of post-processed AlGaN/GaN (HFET)s effectively reduced the RF dispersion. RF full channel current of the same 0.3mum x 100mum HFETs at 8 GHz increased from 400 mA/mm to 800 mA/mm and the saturated output power density was also doubled from 0.8 W/mm to 1.6 W/mm.; Very high levels of type doping of GaN and AlxGa1-x N alloys were successfully achieved by degenerate doping technique with RF plasma induced Molecular Beam Epitaxy growth and Si dopant. Electron concentrations were obtained up to 1.25 x 1020 cm-3 when the Al more fraction was 50%, and 8.5 x 1019 cm -3 electrons were measured even when the Al mole fraction was 80%. Despite the very high S doping density, there was no significant degradation of materials properties, and, in fact, the layers showed superior optical and structural qualities suitable for device applications.
机译:III族氮化物半导体,氮化铝(AlN),氮化镓(GaN)和氮化铟(InN)已成为下一代材料,特别是用于开发蓝/紫外范围光发射器或检测器以及高功率高频电子器件,因为它们的带隙大(InN除外)和独特的材料特性(例如大极化)。在这项研究中,已经开发了利用RF氮等离子体源开发的用于III族氮化物半导体(尤其是GaN和AlGaN)的分子束外延(MBE)生长技术。研究重点集中在AlGaN / GaN异质结场效应晶体管(HFET)的生长以及GaN和AlGaN的n型和p型掺杂技术的开发上。通过蓝宝石的低温氮化,AIN成核层和富含Ga的生长条件获得了高质量的GaN膜。在AlGaN / GaN结构的二维电子气中,通常获得的电子迁移率超过1000 cm2Ns,其薄层电子密度约为1.0 x 10-3 cm-2。在其中一种MBE生长的AIGaN / GaN结构上制造了具有0.3μmx100μmT形栅极的异质结场效应晶体管,该结构表现出800 mA / mm的直流全沟道电流和0.8 W / mm的饱和输出功率密度(在8 GHz时)。 A类操作。该HFET的击穿电压和截止频率(ftau)分别为60 V和44.6 GHz。由于RF分散,在3 GHz处的最大通道电流被限制为仅DC电流的一半,但是有效地减少了RF等离子体诱导的分子束外延在后处理的AlGaN / GaN(HFET)表面上沉积的薄AlN钝化层射频色散。相同的0.3mum x 100mum HFET在8 GHz时的RF全通道电流从400 mA / mm增加到800 mA / mm,饱和输出功率密度也从0.8 W / mm增加到1.6 W / mm。通过简并掺杂技术,射频等离子体诱导的分子束外延生长和硅掺杂剂,成功实现了GaN和AlxGa1-x N合金的高水平类型掺杂。当更多的Al分数为50%时,电子浓度达到1.25×1020cm-3,即使当Al的摩尔分数为80%时也测得8.5×1019cm -3电子。尽管非常高的S掺杂密度,材料的性能并没有显着降低,并且实际上,这些层显示出了适用于器件应用的优异光学和结构质量。

著录项

  • 作者

    Hwang, Jeonghyun.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号