首页> 外文学位 >Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications.
【24h】

Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications.

机译:通过气溶胶化学气相沉积合成纳米结构薄膜,用于储能应用。

获取原文
获取原文并翻译 | 示例

摘要

Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes.;The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated.;The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular structures, due to a combination of high surface area, improved lithium diffusivity and electronic conductivity. The model developed allows for the prediction of optimized nanostructure geometry depending on the end-use application.;Increasing demand for lithium-ion batteries, posing concerns for lithium supply and costs in future, have motivated research in sodium-ion batteries as alternatives. In this work, the nanostructured TiO2 electrodes have been studied as anodes for sodium ion batteries. To improve the performance, a new multi-component ACVD process has been developed to achieve single-step synthesis of doped nanostructured thin films. One-dimensional niobium doped TiO2 thin films have been synthesized and characterized as a novel anode material for sodium-ion batteries. The doped nanostructured thin films deliver significant improvements on capacity over their undoped counterparts and demonstrate feasibility of sodium-ion batteries. In summary, the studies conducted in this dissertation develop a detailed understanding of the ACVD process and demonstrate its ability to synthesize superior nanostructured thin films for energy storage applications, thereby motivating process scalability for commercial applications.
机译:可再生能源为不断增长的能源需求提供了可行的解决方案,同时减轻了对温室气体排放和气候变化的担忧。这导致了朝着太阳能和风能收集技术的巨大势头,从而推动了效率的提高和成本的降低。但是,这些能源的间歇性使能源存储技术成为必需,而这些技术仍然是实现可再生能源目标的致命弱点。本论文着眼于两种解决能量存储需求的方法:首先,通过光电化学水分解将太阳能直接转化为燃料,其次,通过开发新的电极结构和合成工艺,提高当前可充电电池的性能。气相沉积(ACVD)工艺已经成为一种有前途的单步方法,可以直接在基板上进行纳米结构的薄膜合成。过程中形态与操作参数之间的关系很复杂。在这项工作中,已经开发了一种基于模拟的方法来理解这种关系并获得预测形态的能力。 TiO2的这些受控的纳米结构形态与各种形状的金纳米颗粒复合后,用于太阳能水分解应用。已经证明了在复合结构中可见光范围内光吸收的调谐以及减少的电子-空穴复合。; ACVD工艺进一步扩展到直接在集电器上的纳米结构TiO2电极的新型单步合成作为锂离子电池的负极,主要用于电动汽车和混合动力汽车。通过实验研究和电化学迁移模型研究了纳米结构的形态学影响。结果表明,由于高表面积,改进的锂扩散性和电子传导性的结合,单晶一维纳米结构的性能优于颗粒结构。开发的模型可以根据最终用途来预测优化的纳米结构的几何形状。对锂离子电池的需求不断增长,对锂的供应和成本构成了担忧,这激发了钠离子电池作为替代品的研究。在这项工作中,已经研究了纳米结构的TiO2电极作为钠离子电池的阳极。为了提高性能,已经开发了一种新的多组分ACVD工艺来实现掺杂纳米结构薄膜的单步合成。已经合成了一维铌掺杂的TiO2薄膜,并将其表征为钠离子电池的新型负极材料。掺杂的纳米结构薄膜与未掺杂的薄膜相比,容量显着提高,并证明了钠离子电池的可行性。综上所述,本文对ACVD工艺进行了深入的了解,并证明了其能够合成用于储能应用的优质纳米结构薄膜的能力,从而激发了用于商业应用的工艺可扩展性。

著录项

  • 作者

    Chadha, Tandeep S.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Chemical engineering.;Environmental engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号