首页> 外文学位 >Study of nanoscale CMOS device and circuit reliability.
【24h】

Study of nanoscale CMOS device and circuit reliability.

机译:纳米CMOS器件和电路可靠性的研究。

获取原文
获取原文并翻译 | 示例

摘要

The development of semiconductor technology has led to the significant scaling of the transistor dimensions - The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important for the nanoscale CMOS devices, because of the high electrical field due to the small device size and high temperature due to the high transistor densities and high-speed performances.; This dissertation focuses on the study of voltage and temperature stress-induced reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for nanoscale devices was employed to simulate the RF performance degradation in circuit level. The parameter measurement and model extraction have been addressed. Furthermore, a methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the nanoscale devices---low noise amplifier, oscillator, mixer, and power amplifier, have been investigated systematically.; The contributions of this dissertation include: (1) It provides a thorough study of the reliability issues caused by voltage and/or temperature stresses on nanoscale devices---from device level to circuit level; (2) The more real voltage stress case---high frequency (900 MHz) dynamic stress, has been first explored and compared with the traditional DC stress; (3) A simple and practical analytical method to predict RF performance degradation due to voltage stress in the nanoscale devices and RF circuits was given based on the normalized parameter degradations in device models. It provides a quick way for the designers to evaluate the performance degradations; (4) Measurement and model extraction technologies, special for the nanoscale MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model establishments; (5) Using the present existing computer-aided design tools (Cadence, Agilent ADS) with the developed models for performance degradation evaluation due to voltage or/and temperature stress by simulations provides a potential way that industry could use to save tens of millions of dollars annually in testing costs.; The world now stands at the threshold of the age of nanotechnology, and scientists and engineers have been exploring here for years. The reliability is the first challenge for the commercialization of the nanoscale CMOS devices, which will be further downscaling into several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation, from device level to circuit level, provide not only an insight on how the voltage and/or temperature stress effects on the performances, but also methods and guidance for the designers to achieve more reliable circuits with nanoscale MOSFETs in the future.
机译:半导体技术的发展已导致晶体管尺寸的显着缩小-晶体管的栅极长度下降到数十纳米,栅极氧化物的厚度下降到1 nm。在未来的几年中,深亚微米器件将以高晶体管密度和相应的性能增强在半导体行业中占主导地位。对于这些设备,可靠性问题是商业化的首要考虑。由电压和/或温度应力引起的主要可靠性问题是栅极氧化层击穿(BD),热载流子效应(HCs)和负偏置温度不稳定性(NBTI)。对于纳米级CMOS器件而言,它们变得尤为重要,这是因为由于器件尺寸小而产生的高电场以及由于高晶体管密度和高速性能而导致的高温。本文主要研究电压和温度应力引起的纳米级CMOS器件和电路的可靠性问题。 BD,HCs和NBTI的物理机制已经提出。采用了实用且精确的纳米级等效电路模型来模拟电路级RF性能的下降。参数测量和模型提取已解决。此外,开发了一种方法来预测HC,TDDB和NBTI对具有纳米级CMOS的RF电路的影响。它为RF电路设计的可靠性考虑提供了指导。已经系统地研究了BD,HC和NBTI对使用纳米级器件(低噪声放大器,振荡器,混频器和功率放大器)的数字门和RF构造块的影响。本文的研究成果包括:(1)全面研究了纳米级器件上电压和/或温度应力引起的可靠性问题-从器件级到电路级; (2)首先研究了更真实的电压应力情况-高频(900 MHz)动态应力,并将其与传统的直流应力进行了比较; (3)基于归一化的器件模型参数退化,给出了一种简单实用的分析方法来预测由于纳米级器件和RF电路中的电压应力导致的RF性能退化。它为设计人员提供了一种评估性能下降的快速方法。 (4)解决并采用了专门用于具有超薄,超漏栅氧化物的纳米级MOSFET的测量和模型提取技术; (5)将现有的计算机辅助设计工具(Cadence,Agilent ADS)与已开发的模型一起使用,以通过仿真评估由于电压或/和温度应力而导致的性能下降,这为工业界节省了数千万美元的潜在成本。每年的测试费用为美元。现在,世界正处于纳米技术时代的门槛,科学家和工程师已经在这里探索了多年。可靠性是纳米级CMOS器件商业化的第一个挑战,它将进一步缩小到几十或十纳米。可靠性不再是设计后的评估,而是设计前的考虑。论文从器件水平到电路水平的成功硕果,不仅为电压和/或温度应力如何影响性能提供了见识,还为设计人员提供了实现纳米级更可靠电路的方法和指导。未来的MOSFET。

著录项

  • 作者

    Yu, Chuanzhao.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号