首页> 外文会议>Workshop on computational approaches to causality in language 2014 >Recognizing Causality in Verb-Noun Pairs via Noun and Verb Semantics
【24h】

Recognizing Causality in Verb-Noun Pairs via Noun and Verb Semantics

机译:通过名词和动词语义识别动词-名词对中的因果关系

获取原文
获取原文并翻译 | 示例

摘要

Several supervised approaches have been proposed for causality identification by relying on shallow linguistic features. However, such features do not lead to improved performance. Therefore, novel sources of knowledge are required to achieve progress on this problem. In this paper, we propose a model for the recognition of causality in verb-noun pairs by employing additional types of knowledge along with linguistic features. In particular, we focus on identifying and employing semantic classes of nouns and verbs with high tendency to encode cause or non-cause relations. Our model incorporates the information about these classes to minimize errors in predictions made by a basic supervised classifier relying merely on shallow linguistic features. As compared with this basic classifier our model achieves 14.74% (29.57%) improvement in F-score (accuracy), respectively.
机译:已经提出了几种受监督的方法,用于通过浅层语言特征识别因果关系。但是,此类功能不会提高性能。因此,需要新的知识来源来解决这个问题。在本文中,我们提出了一种通过使用其他类型的知识以及语言特征来识别动词-名词对中因果关系的模型。尤其是,我们专注于识别和使用名词和动词的语义类别,这些类别具有对因果关系或非因果关系进行编码的趋势。我们的模型结合了有关这些类的信息,以最大程度地减少仅依赖浅语言功能的基本监督分类器所做的预测错误。与该基本分类器相比,我们的模型的F得分(准确性)分别提高了14.74%(29.57%)。

著录项

  • 来源
  • 会议地点 Gothenburg(SE)
  • 作者

    Mehwish Riaz; Roxana Girju;

  • 作者单位

    Department of Computer Science and Beckman Institute University of Illinois at Urbana-Champaign Urbana, IL 61801, USA;

    Department of Computer Science and Beckman Institute University of Illinois at Urbana-Champaign Urbana, IL 61801, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号