首页> 外文会议>User modeling, adaptation, and personalization >Context-Dependent Feedback Prioritisation in Exploratory Learning Revisited
【24h】

Context-Dependent Feedback Prioritisation in Exploratory Learning Revisited

机译:探究性学习中基于上下文的反馈优先级

获取原文
获取原文并翻译 | 示例

摘要

The open nature of exploratory learning leads to situations when feedback is needed to address several conceptual difficulties. Not all, however, can be addressed at the same time, as this would lead to cognitive overload and confuse the learner rather than help him/her. To this end, we propose a personalised context-dependent feedback prioritisation mechanism based on Analytic Hierarchy Process (AHP) and Neural Networks (NN). AHP is used to define feedback prioritisation as a multi-criteria decision-making problem, while NN is used to model the relation between the criteria and the order in which the conceptual difficulties should be addressed. When used alone, AHP needs a large amount of data from experts to cover all possible combinations of the criteria, while the AHP-NN synergy leads to a general model that outputs results for any such combination. This work was developed and tested in an exploratory learning environment for mathematical generalisation called eXpresser.
机译:探索性学习的开放性导致需要解决一些概念上的困难的反馈情况。但是,并非所有问题都可以同时解决,因为这会导致认知超负荷并使学习者感到困惑,而不是帮助他/她。为此,我们提出了一种基于分析层次过程(AHP)和神经网络(NN)的个性化上下文相关反馈优先级排序机制。 AHP用于将反馈优先级定义为多标准决策问题,而NN用于对标准与解决概念困难的顺序之间的关系进行建模。当单独使用AHP时,AHP需要专家提供大量数据来涵盖标准的所有可能组合,而AHP-NN的协同作用会导致一个通用模型,该模型可以输出任何此类组合的结果。这项工作是在探索性学习环境中(称为eXpresser)进行开发和测试的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号