首页> 外文会议>Uncertainty in artificial intelligence >Fraud/Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures
【24h】

Fraud/Uncollectible Debt Detection Using a Bayesian Network Based Learning System: A Rare Binary Outcome with Mixed Data Structures

机译:使用基于贝叶斯网络的学习系统进行欺诈/无法收回的债务检测:具有混合数据结构的罕见二进制结果

获取原文
获取原文并翻译 | 示例

摘要

The fraud/uncollectible debt1 problem in the telecommunications industry presents two technical challenges: the detection and the treatment of the account given the detection. In this paper, we focus on the first problem of detection using Bayesian network models, and we briefly discuss the application of a normative expert system for the treatment at the end. We apply Bayesian network models to the problem of fraud/uncollectible debt detection for telecommunication services. In addition to being quite successful at predicting rare event outcomes, it is able to handle a mixture of categorical and continuous data. We present a performance comparison using linear and nonlinear discriminant analysis, classification and regression trees, and Bayesian network models.
机译:电信行业中的欺诈/无法收回的债务1问题带来了两个技术挑战:检测和处理检测到的帐户。在本文中,我们着重于使用贝叶斯网络模型进行检测的第一个问题,最后我们简要讨论了规范专家系统在治疗中的应用。我们将贝叶斯网络模型应用于电信服务的欺诈/无法收回的债务检测问题。除了在预测罕见事件结果方面非常成功之外,它还能够处理分类数据和连续数据。我们提出使用线性和非线性判别分析,分类和回归树以及贝叶斯网络模型进行性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号