首页> 外文期刊>Expert Systems with Application >Auto claim fraud detection using Bayesian learning neural networks
【24h】

Auto claim fraud detection using Bayesian learning neural networks

机译:使用贝叶斯学习神经网络的自动索赔欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

This article explores the explicative capabilities of neural network classifiers with automatic relevance determination weight regularization, and reports the findings from applying these networks for personal injury protection automobile insurance claim fraud detection. The automatic relevance determination objective function scheme provides us with a way to determine which inputs are most informative to the trained neural network model. An implementation of MacKay's, (1992a,b) evidence framework approach to Bayesian learning is proposed as a practical way of training such networks, The empirical evaluation is based on a data set of closed claims from accidents that occurred in Massachusetts, USA during 1993.
机译:本文探索了具有自动相关性确定权重正则化的神经网络分类器的解释功能,并报告了将这些网络应用于人身保护汽车保险索赔欺诈检测的发现。自动相关性确定目标函数方案为我们提供了一种方法,可以确定哪些输入对训练后的神经网络模型最有用。提出了一种MacKay(1992a,b)证据框架方法进行贝叶斯学习的方法,作为训练此类网络的一种实用方法。实证评估是基于1993年美国马萨诸塞州发生的意外事故的非公开索赔数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号