首页> 外文期刊>Neurocomputing >Improved competitive learning neural networks for network intrusion and fraud detection
【24h】

Improved competitive learning neural networks for network intrusion and fraud detection

机译:改进的竞争性学习神经网络,用于网络入侵和欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

In this research, we propose two new clustering algorithms, the improved competitive learning network (ICLN) and the supervised improved competitive learning network (SICLN), for fraud detection and network intrusion detection. The ICLN is an unsupervised clustering algorithm, which applies new rules to the standard competitive learning neural network (SCLN). The network neurons in the ICLN are trained to represent the center of the data by a new reward-punishment update rule. This new update rule overcomes the instability of the SCLN. The SICLN is a supervised version of the ICLN. In the SICLN, the new supervised update rule uses the data labels to guide the training process to achieve a better clustering result. The SiCLN can be applied to both labeled and unlabeled data and is highly tolerant to missing or delay labels. Furthermore, the SICLN is capable to reconstruct itself, thus is completely independent from the initial number of clusters. To assess the proposed algorithms, we have performed experimental comparisons on both research data and real-world data in fraud detection and network intrusion detection. The results demonstrate that both the ICLN and the SICLN achieve high performance, and the SICLN outperforms traditional unsupervised clustering algorithms.
机译:在这项研究中,我们提出了两种新的聚类算法:改进的竞争学习网络(ICLN)和监督的改进的竞争学习网络(SICLN),用于欺诈检测和网络入侵检测。 ICLN是一种无监督的聚类算法,它将新规则应用于标准竞争性学习神经网络(SCLN)。通过新的奖励惩罚更新规则,对ICLN中的网络神经元进行了训练,使其代表数据的中心。此新的更新规则克服了SCLN的不稳定。 SICLN是ICLN的受监管版本。在SICLN中,新的监督更新规则使用数据标签来指导训练过程,以获得更好的聚类结果。 SiCLN可以应用于带标签的数据和未带标签的数据,并且对丢失或延迟的标签具有很高的容忍度。此外,SICLN能够重建自身,因此完全独立于初始簇数。为了评估提出的算法,我们对欺诈检测和网络入侵检测中的研究数据和实际数据进行了实验比较。结果表明,ICLN和SICLN均实现了高性能,并且SICLN优于传统的无监督聚类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号