首页> 外文会议>Structural, Syntactic, and Statistical Pattern Recognition >A Learning Approach to 3D Object Representation for Classification
【24h】

A Learning Approach to 3D Object Representation for Classification

机译:分类的3D对象表示的学习方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we describe our 3D object signature for 3D object classification. The signature is based on a learning approach that finds salient points on a 3D object and represent these points in a 2D spatial map based on a longitude-latitude transformation. Experimental results show high classification rates on both pose-normalized and rotated objects and include a study on classification accuracy as a function of number of rotations in the training set.
机译:在本文中,我们描述了用于3D对象分类的3D对象签名。签名基于一种学习方法,该方法在3D对象上找到显着点,并基于经纬度变换在2D空间图中表示这些点。实验结果表明,对姿势标准化对象和旋转对象均具有很高的分类率,并包括根据训练集中旋转次数对分类精度的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号