首页> 外文期刊>Neural processing letters >Convolutional Shape-Aware Representation for 3D Object Classification
【24h】

Convolutional Shape-Aware Representation for 3D Object Classification

机译:用于3D对象分类的卷积形状感知表示

获取原文
获取原文并翻译 | 示例

摘要

Deep learning has recently emerged as one of the most popular and powerful paradigms for learning tasks. In this paper, we present a deep learning approach to 3D shape classification using convolutional neural networks. The proposed framework takes a multi-stage approach that first represents each 3D shape in the dataset as a 2D image using the bag-of-features model in conjunction with intrinsic spatial pyramid matching that leverages the spatial relationship between features. These 2D images are then fed into a pre-trained convolutional neural network to learn deep convolutional shape-aware descriptors from the penultimate fully-connected layer of the network. Finally, a multiclass support vector machine classifier is trained on the deep descriptors, and the classification accuracy is subsequently computed. The effectiveness of our approach is demonstrated on three standard 3D shape benchmarks, yielding higher classification accuracy rates compared to existing methods.
机译:深度学习最近已成为学习任务的最流行和最强大的范例之一。在本文中,我们提出了一种使用卷积神经网络进行3D形状分类的深度学习方法。所提出的框架采用了多阶段方法,该方法首先使用特征包模型结合利用特征之间空间关系的固有空间金字塔匹配,将数据集中的每个3D形状表示为2D图像。然后将这些2D图像馈送到预训练的卷积神经网络中,以从网络的倒数第二个完全连接层学习深度的卷积感知形状的描述符。最后,在深度描述符上训练多类支持向量机分类器,然后计算分类精度。我们的方法的有效性在三个标准的3D形状基准上得到了证明,与现有方法相比,其分类准确率更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号