首页> 外文会议>String processing and information retrieval >Identifying SNPs without a Reference Genome by Comparing Raw Reads
【24h】

Identifying SNPs without a Reference Genome by Comparing Raw Reads

机译:通过比较原始读物鉴定没有参考基因组的SNP

获取原文
获取原文并翻译 | 示例

摘要

Next generation sequencing (NGS) technologies are being applied to many fields of biology, notably to survey the polymorphism across individuals of a species. However, while single nucleotide polymorphisms (SNPs) are almost routinely identified in model organisms, the detection of SNPs in non model species remains very challenging due to the fact that almost all methods rely on the use of a reference genome. We address here the problem of identifying SNPs without a reference genome. For this, we propose an approach which compares two sets of raw reads. We show that a SNP corresponds to a recognisable pattern in the de Bruijn graph built from the reads, and we propose algorithms to identify these patterns, that we call mouths. We outline the potential of our method on real data. The method is tailored to short reads (typically Illumina), and works well even when the coverage is low where it reports few but highly confident SNPs. Our program, called kisSnp, can be downloaded here: http://alcovna.genouest.org/kissnp/.
机译:下一代测序(NGS)技术已应用于生物学的许多领域,特别是用于调查物种个体间的多态性。然而,尽管在模型生物中几乎可以常规鉴定出单核苷酸多态性(SNP),但由于几乎所有方法都依赖于参考基因组的使用,因此在非模型物种中检测SNP仍然非常具有挑战性。我们在这里解决在没有参考基因组的情况下鉴定SNP的问题。为此,我们提出了一种比较两组原始读取的方法。我们显示了SNP对应于根据读数构建的de Bruijn图中的可识别模式,并且我们提出了识别这些模式的算法,我们称之为嘴巴。我们概述了我们的方法在实际数据上的潜力。该方法是为短读量身定制的(通常是Illumina),即使覆盖率低,报告的SNP很少但也很有信心,效果很好。我们的程序kisSnp可以在这里下载:http://alcovna.genouest.org/kissnp/。

著录项

  • 来源
  • 会议地点 Los Cabos(MX);Los Cabos(MX)
  • 作者单位

    INRIA Rennes - Bretagne Atlantique, EPI Symbiose, Rennes, France;

    INRIA Rennes - Bretagne Atlantique, EPI Symbiose, Rennes, France;

    Dipartimento di Informatica, Universita di Pisa, Italy;

    INRIA Rhone-Alpes, 38330 Montbonnot Saint-Martin, Prance and Universite de Lyon, F-69000 Lyon, Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622 Villeurbanne, France;

    INRIA Rhone-Alpes, 38330 Montbonnot Saint-Martin, Prance and Universite de Lyon, F-69000 Lyon, Universite Lyon 1, CNRS, UMR5558, Laboratoire de Biometrie et Biologie Evolutive, F-69622 Villeurbanne, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号