首页> 外文会议>Simulation, Modeling, and Programming for Autonomous Robots >Real-Time Least-Square Fitting of Ellipses Applied to the RobotCub Platform
【24h】

Real-Time Least-Square Fitting of Ellipses Applied to the RobotCub Platform

机译:椭圆的实时最小二乘拟合应用于RobotCub平台

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the first implementation of a new algorithm for pattern recognition in machine vision developed in our laboratory. This algorithm has been previously presented only theoretically, without practical use. In this work we applied it to the RobotCub hu-manoid robotics platform simulator. We used it as a base for a circular object localization within the 3D surrounding space. The algorithm is a robust and direct method for the least-square fitting of ellipses to scattered data. RobotCub is an open source platform, born to study the development of neuro-scientific and cognitive skills in human beings, especially in children. Visual pattern recognition is a basic capability of many species in nature. The skill of visually recognizing and distinguishing different objects in the surrounding environment gives rise to the development of sensory-motor maps in the brain, with the consequent capability of object manipulation. In this work we present an improvement of the RobotCub project in terms of machine vision software, by implementing the method of the least-square fitting of ellipses of Maini (EDFE), previous developed in our laboratory, in a robotics context. Moreover, we compared its performance with the Hough Tranform, and others least-square ellipse fittings techniques. We used our system to detect spherical objects by applying it to the simulated RobotCub platform. We performed several tests to prove the robustness of the algorithm within the overall system. Finally we present our results.
机译:本文介绍了我们实验室开发的一种新的机器视觉模式识别算法的首次实现。该算法以前仅在理论上提出过,没有实际使用。在这项工作中,我们将其应用于RobotCub hu-manoid机器人平台模拟器。我们将其用作3D周围空间内圆形对象定位的基础。该算法是将椭圆最小二乘拟合到分散数据的可靠且直接的方法。 RobotCub是一个开放源代码平台,旨在研究人类尤其是儿童的神经科学和认知技能的发展。视觉模式识别是自然界中许多物种的基本能力。视觉上识别和区分周围环境中不同对象的技能引起了大脑中感觉运动图谱的发展,并随之带来了对象操纵的能力。在这项工作中,我们通过在机器人技术环境中实施先前在我们实验室中开发的Maini椭圆的最小二乘拟合(EDFE)方法,在机器视觉软件方面对RobotCub项目进行了改进。此外,我们将其性能与Hough Tranform以及其他最小二乘椭圆拟合技术进行了比较。我们使用我们的系统将球形物体应用于模拟的RobotCub平台来检测球形物体。我们进行了几次测试,以证明算法在整个系统中的鲁棒性。最后,我们介绍我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号