首页> 外文会议>Signal processing, pattern recognition, and applications >SEMI-BLIND IMAGE RESTORATION USING A LOCAL NEURAL APPROACH
【24h】

SEMI-BLIND IMAGE RESTORATION USING A LOCAL NEURAL APPROACH

机译:使用局部神经网络方法进行半盲图像恢复

获取原文
获取原文并翻译 | 示例

摘要

This work aims to define and experimentally evaluate an iterative strategy based on neural learning for semi-blind image restoration in the presence of blur and noise. A salient aspect of our solution is the local estimation of the restored image based on gradient descent strategies. This method can be viewed as a neural strategy where the pixels of the restored image are the synapse's weights that the neural network tries to modify during learning to minimize the output error measure; the learning strategy adopted is un-supervised. The method was evaluated experimentally using a test pattern generated by a checkerboard function in Matlab. To investigate whether the strategy can be considered an alternative to conventional restoration procedures, the results were compared with those obtained by a well known neural restoration approach.
机译:这项工作旨在定义和实验评估基于神经学习的迭代策略,该算法用于在存在模糊和噪声的情况下进行半盲图像恢复。我们解决方案的一个突出方面是基于梯度下降策略对还原图像进行局部估计。可以将这种方法视为一种神经策略,其中恢复图像的像素是神经网络在学习过程中试图修改的突触权重,以最大程度地减少输出误差。所采用的学习策略是不受监督的。该方法是使用Matlab中的棋盘功能生成的测试图案进行实验评估的。为了研究该策略是否可以被视为传统修复程序的替代方法,将结果与通过众所周知的神经修复方法获得的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号