首页> 外文期刊>Neurocomputing >Semi-blind image restoration using a local neural approach
【24h】

Semi-blind image restoration using a local neural approach

机译:使用局部神经网络方法进行半盲图像复原

获取原文
获取原文并翻译 | 示例

摘要

This work aims to define and experimentally evaluate an iterative strategy based on neural learning for semi-blind image restoration in the presence of blur and noise. Salient aspects of the proposed strategy are the use of a local error function derived from the conventional global constrained error measure and the assignment of a separate regularization parameter to each image pixel based on local gray level variance. This method can be viewed as a neural strategy where the pixels of the restored image are the synapse's weights the neural network tries to modify during learning to minimize the output error measurement. The method was experimentally evaluated in terms of restoration quality and speed using test images synthetically degraded and increasingly corrupted. To investigate whether the strategy can be considered an alternative to neural restoration procedures, the results were compared with those obtained by well known Hopfield-based restoration approaches. Results obtained show that our method performs significantly better and faster than other models considered.
机译:这项工作旨在定义和实验评估基于神经学习的迭代策略,该算法用于在存在模糊和噪声的情况下进行半盲图像恢复。所提出策略的显着方面是使用从常规全局约束误差度量中得出的局部误差函数,以及基于局部灰度方差为每个图像像素分配单独的正则化参数。可以将这种方法视为一种神经策略,其中恢复图像的像素是神经网络在学习过程中试图修改的突触权重,以最大程度地减少输出误差测量。使用合成退化和日益恶化的测试图像,通过实验评估了该方法的修复质量和速度。为了研究该策略是否可以被视为神经修复程序的替代方法,将结果与通过基于Hopfield的著名修复方法获得的结果进行了比较。获得的结果表明,与其他模型相比,我们的方法性能明显更好,更快。

著录项

  • 来源
    《Neurocomputing》 |2009年第3期|389-396|共8页
  • 作者单位

    Universita degli Studi dell'Insubria, via Ravasi, 2-21100 Varese, Italy;

    Universita degli Studi dell'Insubria, via Ravasi, 2-21100 Varese, Italy;

    Universita degli Studi dell'Insubria, via Ravasi, 2-21100 Varese, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    image restoration; deconvolution; adaptive neural network;

    机译:图像恢复;去卷积自适应神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号