首页> 外文会议>Rough sets and current trends in computing >DRSA Decision Algorithm Analysis in Stylometric Processing of Literary Texts
【24h】

DRSA Decision Algorithm Analysis in Stylometric Processing of Literary Texts

机译:文体文体处理中的DRSA决策算法分析

获取原文
获取原文并翻译 | 示例

摘要

When the indiscernibility relation, fundamental to Classical Rough Set Approach, is substituted with dominance relation, it results in Dominance-Based Rough Set Approach to data analysis. It enables support not only for nominal classification tasks, but also when ordinal properties on attribute values can be observed [1], making DRSA methodology well suited for stylometric processing of texts. Stylometry involves handling quantitative features of texts leading to characterisation of authors to the point of recognition of their individual writing styles. As always, selection of attributes is crucial to classification accuracy, as is the construction of a decision algorithm. When minimal cover gives unsatisfactory results, and all rules on examples algorithm returns very high number of rules, usually constraints are imposed by selection of some reduct and limiting the decision algorithm by including within it only rules with certain support. However, reducts are typically numerous and within them some of conditional attributes are used more often than others, which is also true for conditions specified by decision rules. The paper presents observations how the frequency of usage for features reflects on the performance of decision algorithms resulting from selection of rules with conditional attributes exploited most and least often.
机译:当将经典粗糙集方法基础上的不可分辨关系替换为优势关系时,就会导致基于优势的粗糙集方法进行数据分析。它不仅支持名义分类任务,而且还支持观察到属性值的序数属性[1],从而使DRSA方法学非常适合文本的样式处理。笔迹法涉及处理文本的定量特征,从而导致作者的特征化,从而认识到他们的个人写作风格。与以往一样,属性的选择对于分类的准确性至关重要,决策算法的构造也是如此。当最小覆盖率给出的结果不令人满意时,示例算法中的所有规则都返回了非常多的规则,通常通过选择某种归约法并通过在决策算法中仅包括具有一定支持的规则来限制决策算法来施加约束。但是,归约通常很多,其中一些条件属性比其他条件更经常使用,对于决策规则指定的条件也是如此。本文提出了一些观点,即使用特征的频率如何反映出决策算法的性能,该决策算法是通过选择条件属性最多且最不经常利用的规则而产生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号