首页> 外文会议>Reconfigurable computing: architectures, tools and applications. >A High Throughput FPGA-Based Implementation of the Lanczos Method for the Symmetric Extremal Eigenvalue Problem
【24h】

A High Throughput FPGA-Based Implementation of the Lanczos Method for the Symmetric Extremal Eigenvalue Problem

机译:基于FPGA的Lanczos方法的高吞吐量实现,用于对称极值特征值问题

获取原文
获取原文并翻译 | 示例

摘要

Iterative numerical algorithms with high memory bandwidth requirements but medium-size data sets (matrix size ~ a few 100s) are highly appropriate for FPGA acceleration. This paper presents a streaming architecture comprising floating-point operators coupled with high-bandwidth on-chip memories for the Lanczos method, an iterative algorithm for symmetric eigenvalues computation. We show the Lanczos method can be specialized only for extremal eigenvalues computation and present an architecture which can achieve a sustained single precision floating-point performance of 175 GFLOPs on Virtex6-SX475T for a dense matrix of size 335×335. We perform a quantitative comparison with the parallel implementations of the Lanczos method using optimized Intel MKL and CUBLAS libraries for multi-core and GPU respectively. We find that for a range of matrices the FPGA implementation outperforms both multi-core and GPU; a speed up of 8.2-27.3× (13.4× geo. mean) over an Intel Xeon X5650 and 26.2-116× (52.8× geo. mean) over an Nvidia C2050 when FPGA is solving a single eigenvalue problem whereas a speed up of 41-520 × (103 × geo.mean) and 131-2220 × (408 × geo.mean) respectively when it is solving multiple eigenvalue problems.
机译:迭代数值算法对存储器带宽的要求很高,但是中等大小的数据集(矩阵大小〜几百秒)非常适合FPGA加速。本文针对Lanczos方法,提出了一种包含浮点运算符和高带宽片上存储器的流架构,该方法是用于对称特征值计算的迭代算法。我们展示了Lanczos方法只能专门用于极值特征值的计算,并提出了一种架构,该架构可以在Virtex6-SX475T上针对335×335的密集矩阵实现175 GFLOP的持续单精度浮点性能。我们分别使用优化的Intel MKL和CUBLAS库针对多核和GPU,对Lanczos方法的并行实现进行了定量比较。我们发现,对于一系列矩阵,FPGA实施均优于多核和GPU。当FPGA解决单个特征值问题时,在Intel Xeon X5650上加速了8.2-27.3×(13.4×地理平均值),在Nvidia C2050上加速了26.2-116×(52.8×地理平均值),而速度提高了41解决多个特征值问题时,分别为-520×(103×geo.mean)和131-2220×(408×geo.mean)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号