首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >A PARALLEL BLOCK LANCZOS ALGORITHM AND ITS IMPLEMENTATION FOR THE EVALUATION OF SOME EIGENVALUES OF LARGE SPARSE SYMMETRIC MATRICES ON MULTICOMPUTERS
【24h】

A PARALLEL BLOCK LANCZOS ALGORITHM AND ITS IMPLEMENTATION FOR THE EVALUATION OF SOME EIGENVALUES OF LARGE SPARSE SYMMETRIC MATRICES ON MULTICOMPUTERS

机译:并行块Lanczos算法及其在多计算机上稀疏对称矩阵一些特征值的估计。

获取原文
获取原文并翻译 | 示例

摘要

In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC performance on a cluster of workstations with test matrices from Matrix Market and Higham's collections. A comparison with a PARPACK routine is also detailed. Finally, parallel performance is evaluated on random matrices, using standard parameters.
机译:在当前的工作中,我们描述了HPEC(高性能特征值计算),这是一个并行软件包,用于评估大型稀疏对称矩阵的一些特征值。它为分布式内存多计算机实现了一种高效且可移植的Block Lanczos算法。 HPEC基于基本线性代数运算,适用于稀疏和密集矩阵,其中一些是由ScaLAPACK库模块派生的。已经进行了数值实验,以评估来自矩阵市场和Higham系列产品的测试矩阵在一组工作站上的HPEC性能。还详细介绍了与PARPACK例程的比较。最后,使用标准参数在随机矩阵上评估并行性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号