首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Unified Experiment Design, Bayesian Minimum Risk and Convex Projection Regularization Method for Enhanced Remote Sensing Imaging
【24h】

Unified Experiment Design, Bayesian Minimum Risk and Convex Projection Regularization Method for Enhanced Remote Sensing Imaging

机译:统一实验设计,贝叶斯最小风险和凸投影正则化方法用于增强型遥感成像

获取原文
获取原文并翻译 | 示例

摘要

We address new approach for enhanced multi-sensor imaging in uncertain remote sensing (RS) operational scenarios. Our approach is based on incorporating the projections onto convex solution sets (POCS) into the descriptive experiment design regularization (DEDR) and fused Bayesian regularization (FBR) methods to enhance the robustness and convergence of the overall unified DEDR/FBR-POCS procedure for enhanced RS imaging. Computer simulation examples are reported to illustrate the efficiency and improved operational performances of the proposed unified DEDR/FBR-POCS imaging techniques in the extremely uncertain RS operational scenarios.
机译:我们致力于在不确定的遥感(RS)操作场景中增强多传感器成像的新方法。我们的方法基于将凸解决方案集(POCS)上的投影合并到描述性实验设计正则化(DEDR)和融合贝叶斯正则化(FBR)方法中,以增强整体统一DEDR / FBR-POCS过程的鲁棒性和收敛性,从而增强RS成像。报告了计算机仿真示例,以说明在极端不确定的RS操作场景中提出的统一DEDR / FBR-POCS成像技术的效率和改进的操作性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号