首页> 外文OA文献 >Unified Bayesian-Experiment Design Regularization Technique for High-Resolution of the Remote Sensing Imagery
【2h】

Unified Bayesian-Experiment Design Regularization Technique for High-Resolution of the Remote Sensing Imagery

机译:高分辨率遥感影像的统一贝叶斯实验设计正则化技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the problem of estimating from a finite set of measurements of the radar remotely sensed complex data signals, the power spatial spectrum pattern (SSP) of the wavefield sources distributed in the environment is cast in the framework of Bayesian minimum risk (MR) paradigm unified with the experiment design (ED) regularization technique. The fused MR-ED regularization of the ill- posed nonlinear inverse problem of the SSP reconstruction is performed via incorporating into the MR estimation strategy the projection-regularization ED constraints. The simulation examples are incorporated to illustrate the efficiency of the proposed unified MR-ED technique.
机译:在本文中,根据对雷达遥感复杂数据信号的有限测量集进行估算的问题,将环境中分布的波场源的功率空间频谱图(SSP)置于贝叶斯最小风险(MR)框架内)范式与实验设计(ED)正则化技术统一。通过将投影正则化ED约束合并到MR估计策略中,对SSP重构的不适非线性逆问题进行融合MR-ED正则化。仿真示例被纳入以说明所提出的统一MR-ED技术的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号