首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Unifying Experiment Design and Convex Regularization Techniques for Enhanced Imaging With Uncertain Remote Sensing Data—Part II: Adaptive Implementation and Performance Issues
【24h】

Unifying Experiment Design and Convex Regularization Techniques for Enhanced Imaging With Uncertain Remote Sensing Data—Part II: Adaptive Implementation and Performance Issues

机译:带有不确定遥感数据的增强成像的统一实验设计和凸正则化技术-第二部分:自适应实现和性能问题

获取原文
获取原文并翻译 | 示例

摘要

The unified descriptive experiment design regularization (DEDR) method from a companion paper provides a rigorous theoretical formalism for robust estimation of the power spatial spectrum pattern of the wavefield scattered from an extended scene observed in the uncertain remote sensing (RS) environment. For the considered here imaging synthetic aperture radar (SAR) application, the proposed DEDR approach is aimed at performing, in a single optimized processing, SAR focusing, speckle reduction, and RS scene image enhancement and accounts for the possible presence of uncertain trajectory deviations. Being nonlinear and solution dependent, the optimal DEDR estimator requires rather complex signal processing operations ruled by the fixed-point iterative implementation process. To simplify further the processing, in this paper, we propose to incorporate the descriptive regularization via constructing the projections onto convex sets that enable us to factorize and parallelize the reconstructive image processing over the range and azimuth coordinates, design a family of such regularized easy-to-implement iterative algorithms, and provide the relevant computational recipes for their application to fractional imaging SAR. We also comment on the adaptive adjustment of the DEDR operational parameters directly from the actual speckle-corrupted scene images and demonstrate the effectiveness of the proposed adaptive DEDR techniques.
机译:随附论文中的统一描述性实验设计正则化(DEDR)方法为严格估计从不确定遥感(RS)环境中观察到的扩展场景散射的波场的功率空间谱图提供了严格的理论形式。对于此处考虑的成像合成孔径雷达(SAR)应用,建议的DEDR方法旨在在单个优化处理中执行SAR聚焦,斑点减少和RS场景图像增强,并考虑到不确定的轨迹偏差。最佳的DEDR估计器是非线性的且依赖于解决方案,因此需要由定点迭代实现过程决定的相当复杂的信号处理操作。为了进一步简化处理过程,在本文中,我们建议通过将投影构造到凸集上来纳入描述性正则化,从而使我们能够在范围和方位角坐标上对重构图像处理进行因子分解和并行化,设计此类正则化易实现迭代算法,并为将其应用于分数成像SAR提供相关的计算方法。我们还直接从实际的散斑损坏场景图像中对DEDR操作参数的自适应调整进行了评论,并证明了所提出的自适应DEDR技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号