首页> 外文会议>Proceedings of Machine Learning in HPC Environments >Training Speech Recognition Models on HPC Infrastructure
【24h】

Training Speech Recognition Models on HPC Infrastructure

机译:在HPC基础架构上训练语音识别模型

获取原文
获取原文并翻译 | 示例

摘要

Automatic speech recognition is used extensively in speech interfaces and spoken dialogue systems. To accelerate the development of new speech recognition models based on deep learning techniques, developers at Mozilla have open sourced a Speech-To-Text engine known as project DeepSpeech based on Baidu's DeepSpeech research. In order to make model training time quicker on CPUs for DeepSpeech distributed training, we have developed optimizations on the Mozilla DeepSpeech code to scale the model training to a large number of Intel CPU systems, including Horovod distributed training framework integration into DeepSpeech. We have also implemented a novel dataset partitioning scheme to mitigate compute imbalance across multiple nodes of an HPC cluster. We demonstrate training of the DeepSpeech model on the LibriSpeech clean dataset in 6.45Hrs on a 16-Node Intel Xeon based HPC cluster.
机译:自动语音识别广泛用于语音界面和口语对话系统。为了加快基于深度学习技术的新型语音识别模型的开发,Mozilla的开发人员基于百度的DeepSpeech研究,开源了一个名为DeepSpeech的语音转文本引擎。为了使用于DeepSpeech分布式训练的CPU上模型训练的时间更快,我们对Mozilla DeepSpeech代码进行了优化,以将模型训练扩展到大量的Intel CPU系统,包括将Horovod分布式训练框架集成到DeepSpeech中。我们还实现了一种新颖的数据集分区方案,以减轻HPC群集的多个节点之间的计算不平衡。我们演示了在基于16节点Intel Xeon的HPC集群上以6.45Hrs在LibriSpeech干净数据集上对DeepSpeech模型的训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号