首页> 外文期刊>IEEE transactions on audio, speech and language processing >Training Wideband Acoustic Models Using Mixed-Bandwidth Training Data for Speech Recognition
【24h】

Training Wideband Acoustic Models Using Mixed-Bandwidth Training Data for Speech Recognition

机译:使用混合带宽训练数据训练语音识别的宽带声学模型

获取原文
获取原文并翻译 | 示例

摘要

One serious difficulty in the deployment of wideband speech recognition systems for new tasks is the expense in both time and cost of obtaining sufficient training data. A more economical approach is to collect telephone speech and then restrict the application to operate at the telephone bandwidth. However, this generally results in suboptimal performance compared to a wideband recognition system. In this paper, we propose a novel expectation-maximization (EM) algorithm in which wideband acoustic models are trained using a small amount of wideband speech and a larger amount of narrowband speech. We show how this algorithm can be incorporated into the existing training schemes of hidden Markov model (HMM) speech recognizers. Experiments performed using wideband speech and telephone speech demonstrate that the proposed mixed-bandwidth training algorithm results in significant improvements in recognition accuracy over conventional training strategies when the amount of wideband data is limited
机译:为新任务部署宽带语音识别系统的一个严重困难是获得足够训练数据的时间和成本上的花费。一种更经济的方法是收集电话语音,然后限制应用程序以电话带宽运行。但是,与宽带识别系统相比,这通常导致性能欠佳。在本文中,我们提出了一种新颖的期望最大化(EM)算法,其中使用少量的宽带语音和大量的窄带语音来训练宽带声学模型。我们展示了如何将该算法结合到隐马尔可夫模型(HMM)语音识别器的现有训练方案中。使用宽带语音和电话语音进行的实验表明,当宽带数据量有限时,所提出的混合带宽训练算法与传统的训练策略相比,可显着提高识别精度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号