首页> 外文会议>Predictive econometrics and big data >A Calibration-Based Method in Computing Bayesian Posterior Distributions with Applications in Stock Market
【24h】

A Calibration-Based Method in Computing Bayesian Posterior Distributions with Applications in Stock Market

机译:贝叶斯后验分布的基于标定的方法及其在股市中的应用

获取原文
获取原文并翻译 | 示例

摘要

Finding effective methods to compute or estimate posterior distributions of model parameters is of paramount importance in Bayesian statistics. In fact, Bayesian inference has only been extraordinarily popular in applications after the births of efficient algorithms like the Monte Carlo Markov Chain. Practicality of posterior distributions depends heavily on the combination of likelihood functions and prior distributions. In certain cases, closed-form formulas for posterior distributions can be attained; in this paper, based on the theory of distortion functions, a calibration-like method to calculate explicitly the posterior distributions for three crucial models, namely the normal, Poisson and Bernoulli is introduced. The paper ends with some applications in stock market.
机译:寻找有效的方法来计算或估计模型参数的后验分布在贝叶斯统计中至关重要。实际上,在像蒙特卡洛马尔可夫链之类的高效算法诞生之后,贝叶斯推理才在应用中非常流行。后验分布的实用性在很大程度上取决于似然函数和先验分布的组合。在某些情况下,可以得到后验分布的封闭式公式。本文基于失真函数理论,介绍了一种类似标定的方法,用于显式计算三个关键模型(正态,泊松和伯努利)的后验分布。本文以股票市场的一些应用为结尾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号