首页> 外文期刊>Mathematics and computers in simulation >Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets
【24h】

Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets

机译:重尾市场微观结构模型的贝叶斯分析及其在股票市场中的应用

获取原文
获取原文并翻译 | 示例

摘要

The market microstructure (MM) models using normal distribution are useful tools for modeling financial time series, but they cannot explain essential characteristics of skewness and heavy tails, which may occur in a market. To cope with this problem, a heavy-tailed market microstructure model based on Student-t distribution (MM-t) is proposed in this paper. Under the assumption of non-normality, an efficient Markov chain Monte Carlo (MCMC) method is developed for parameter estimation of the proposed model. The simulation study verifies the effectiveness of the estimation approach. In empirical study, the proposed model for various stock market indices is compared to the MM models with other distributions, such as the normal distribution and a mixture of two normal distributions. Empirical results indicate that the stock prices/returns have heavy tails and the MM-t model provides a better fit than the MM models with other distributions for some financial time series. Comparison of some different type models is also done, which demonstrates that the MM-r model fits the three indices better than the stochastic volatility (SV-t) model with Student-t distribution.
机译:使用正态分布的市场微观结构(MM)模型是用于对金融时间序列建模的有用工具,但它们无法解释市场中可能出现的偏斜和粗尾的基本特征。为了解决这个问题,本文提出了一种基于学生t分布(MM-t)的重尾市场微观结构模型。在非正态性的假设下,开发了一种有效的马尔可夫链蒙特卡洛(MCMC)方法,用于所提出模型的参数估计。仿真研究验证了估计方法的有效性。在实证研究中,将所建议的各种股票市场指数模型与具有其他分布(例如正态分布和两个正态分布的混合)的MM模型进行比较。实证结果表明,在某些财务时间序列上,股票价格/回报率有大量尾巴,MM-t模型比具有其他分布的MM模型更适合。还比较了一些不同类型的模型,这表明MM-r模型比带有Student-t分布的随机波动率(SV-t)模型更适合这三个指数。

著录项

  • 来源
    《Mathematics and computers in simulation》 |2015年第11期|141-153|共13页
  • 作者单位

    School of Information Science & Engineering, Central South University, Changsha, Hunan 410083, China,Hunan Province Higher Education Key Laboratory of Power System Safety Operation and Control, Changsha University of Science and Technology, Changsha, Hunan 410004, China,Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Changsha, Hunan 410083, China,Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China;

    School of Information Science & Engineering, Central South University, Changsha, Hunan 410083, China,Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Changsha, Hunan 410083, China,Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China;

    School of Information Science & Engineering, Central South University, Changsha, Hunan 410083, China,Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Changsha, Hunan 410083, China,Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China;

    School of Information Science & Engineering, Central South University, Changsha, Hunan 410083, China,Hunan Province Higher Education Key Laboratory of Power System Safety Operation and Control, Changsha University of Science and Technology, Changsha, Hunan 410004, China,Hunan Engineering Laboratory for Advanced Control and Intelligent Automation, Changsha, Hunan 410083, China,Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China;

    School of Business, Central South University, Changsha, Hunan 410083, China,Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Market microstructure model; Heavy tails; Student-t distribution; A mixture of two normal distributions; Markov chain Monte Carlo algorithm;

    机译:市场微观结构模型;粗尾巴;学生t分布;两种正态分布的混合;马尔可夫链蒙特卡罗算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号