【24h】

JBC: Joint Boost Clustering method for synthesis aperture radar images

机译:JBC:用于合成孔径雷达图像的联合Boost聚类方法

获取原文
获取原文并翻译 | 示例

摘要

A clustering method based on Joint Boost for Synthesis Aperture Radar images is proposed. In this method, we follow the steps of Joint Boost, but substitute weak learns with basic clustering algorithm. We compute the sharing features between samples in order to reduce clustering times. The proposed clustering method, JBC constructs a new training set by random sampling from the original dataset, then selects the best feature and the best clusters for sharing, and calculates a distribution over the training samples using current shared feature and clusters, and finally a basic clustering algorithm (e.g. K-mean) is applied to partition the new training set. The final clustering solution is produced by aggregating the obtained partitions. The clustering results for SAR images show that the proposed method has a good performance.
机译:提出了一种基于联合Boost的合成孔径雷达图像聚类方法。在这种方法中,我们遵循Joint Boost的步骤,但是用基本的聚类算法代替了弱学习。我们计算样本之间的共享功能,以减少聚类时间。提出的聚类方法JBC通过从原始数据集中随机抽样构造新的训练集,然后选择最佳特征和最佳聚类进行共享,并使用当前的共享特征和聚类计算训练样本的分布,最后得出一个基本应用聚类算法(例如K均值)对新训练集进行划分。通过聚集获得的分区来产生最终的聚集解决方案。 SAR图像的聚类结果表明,该方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号