【24h】

PCA and level set based non-rigid image registration for MRI and Paxinos-Watson atlas of rat brain

机译:大鼠大脑MRI和Paxinos-Watson地图集的基于PCA和水平集的非刚性图像配准

获取原文
获取原文并翻译 | 示例

摘要

Image registration provides the ability to geometrically align one dataset with another. It is a basic task in a great variety of biomedical imaging applications. This paper introduced a novel three-dimensional registration method for Magnetic Resonance Image (MRI) and Paxinos-Watson Atlas of rat brain. For the purpose of adapting to a large range and non-linear deformation between MRI and atlas in higher registration accuracy, based on the segmentation of rat brain, we chose the principle components analysis (PCA) automatically performing the linear registration, and then, a level set based nonlinear registration correcting some small distortions. We implemented this registration method in a rat brain 3D reconstruction and analysis system. Experiments have demonstrated that this method can be successfully applied to registering the low resolution and noise affection MRI with Paxinos-Watson Atlas of rat brain.
机译:图像配准提供了将一个数据集与另一个数据集进行几何对齐的功能。在许多生物医学成像应用中,这是一项基本任务。本文介绍了一种新的三维三维图像配准方法,用于磁共振成像(MRI)和大鼠大脑Paxinos-Watson Atlas。为了适应MRI和图谱之间的较大范围和非线性变形,以更高的配准精度,我们基于大鼠脑的分割,选择了自动进行线性配准的主成分分析(PCA),然后,基于水平集的非线性配准校正了一些小失真。我们在大鼠脑3D重建和分析系统中实现了这种注册方法。实验证明,该方法可成功应用于大鼠脑Paxinos-Watson Atlas记录低分辨率和噪声影响的MRI。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号