首页> 外文会议>IMAPS Conference and Exhibition on Ceramic Interconnect Technology >Manufacturability and Reliability of Trimmed Buried Resistors in LTCC
【24h】

Manufacturability and Reliability of Trimmed Buried Resistors in LTCC

机译:LTCC中修剪埋地电阻的可制造性和可靠性

获取原文

摘要

Embedding resistors in the substrate is a smart solution to achieve a higher component density/area. In general, Low Temperature Cofired Ceramic (LTCC) technology offers this feature. Though this opportunity exists for years, the usage is still very low. Embedding "foreign" materials in the LTCC body might be a challenge. One has to find a system, which shows no or little interactions with both the LTCC-glass and the termination while offering a matched shrinkage to the tape during free sintering. Secondly, the usual methods to finetune target resistor values by mixing of pastes and adjusting the sintering profile with subsequent firings/measurements do not apply due to the long sintering cycle. Further application related post/ire steps are influencing the final resistance as well. All these parameters must already be available during the design process. Thirdly, the typical printed resistor tolerance of +-25 percent is not adequate to the majority of circuit designs. The latter can be solved by high voltage pulse trimming. The use of very short pulses avoids great Joule heating in certain regions, which have a higher current concentration (hot spots). The efficiency of the high voltage pulses depends on the setting of various parameters (pulse amplitude, pulse frequency, burst duration, number of bursts and kind of resistor system). The energy supplied and the resistor length is proportional. The microparticles within the microstructures of the fired resistors will be affected during the supply of the energy of high voltage pulses. This effect is based on the chemical composition of the resistors pastes, the physical construction of the networks of microstructures in the resistor system and the above mentioned pulse parameters. Optimization of pulse parameters allowed to reduce the pulse amplitude to a few hundreds volts. Therefore, trimming of buried resistors in complex hybrid circuits can be accomplished without any damage of adjacent components. By means of this method it is possible to achieve a trimming rate of +-25 percent. The paper focusses on the selection of different pastes (10 Ω/sq ― 10 kΩ/sq) based on manufacturability, LTCC compatibility and refiring behavior. The selected candidates will be evaluated in terms of their trim-sensitivity and stability after trimming. Typical processing conditions for assembly will be applied (reflow, underfill/glop top curing cycles etc.) and a qualification (1000h temperature storage, thermal cycling etc.) will be performed.
机译:衬底中的嵌入电阻是智能解决方案,以实现更高的分量密度/区域。一般来说,低温COFired陶瓷(LTCC)技术提供了此功能。虽然这个机会多年来,但使用仍然很低。在LTCC体内嵌入“外国”材料可能是一个挑战。一个人必须找到一个系统,其显示没有或几​​乎没有与LTCC玻璃和终端的相互作用,同时在自由烧结期间向胶带提供匹配的收缩。其次,通过混合浆料和随后的烧制/测量调节烧结曲线来调节烧结曲线的常规方法,由于长烧结循环,不适用。进一步的申请相关的柱/ IRE步骤也影响最终阻力。所有这些参数必须在设计过程中可用。第三,典型的印刷电阻耐受+ -25%的公差对于大多数电路设计不足。后者可以通过高压脉冲修剪来解决。使用非常短的脉冲避免了某些区域中的大焦耳加热,其具有更高的电流浓度(热点)。高压脉冲的效率取决于各种参数的设置(脉冲幅度,脉冲频率,突发持续时间,突发数量和电阻系统的种类)。供应的能量和电阻长度比例。在燃烧电阻器的微观结构内的微粒将受到高压脉冲的能量期间的影响。这种效果基于电阻器浆料的化学成分,电阻系统中的微观结构网络的物理结构和上述脉冲参数。优化脉冲参数允许将脉冲幅度降低到几百伏特。因此,可以在没有任何相邻部件的损坏的情况下实现复杂混合电路中的掩埋电阻器的修整。通过这种方法,可以实现+ -25%的修剪速率。本文基于可制造性,LTCC兼容性和分叉行为来侧重于不同粘液(10Ω/ SQ-10kΩ/ SQ)的选择。选择的候选者将在修剪后的调整灵敏度和稳定性方面进行评估。将施加组装的典型加工条件(回流,底部填充/盖孔顶固化周期等),并进行符合资格(1000H温度储存,热循环等)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号