【24h】

Manufacturability and Reliability of Trimmed Buried Resistors in LTCC

机译:LTCC中修整埋入式电阻器的可制造性和可靠性

获取原文
获取原文并翻译 | 示例

摘要

Embedding resistors in the substrate is a smart solution to achieve a higher component density/area. In general, Low Temperature Cofired Ceramic (LTCC) technology offers this feature. Though this opportunity exists for years, the usage is still very low. Embedding "foreign" materials in the LTCC body might be a challenge. One has to find a system, which shows no or little interactions with both the LTCC-glass and the termination while offering a matched shrinkage to the tape during free sintering. Secondly, the usual methods to finetune target resistor values by mixing of pastes and adjusting the sintering profile with subsequent firings/measurements do not apply due to the long sintering cycle. Further application related post/ire steps are influencing the final resistance as well. All these parameters must already be available during the design process. Thirdly, the typical printed resistor tolerance of +-25 percent is not adequate to the majority of circuit designs. The latter can be solved by high voltage pulse trimming. The use of very short pulses avoids great Joule heating in certain regions, which have a higher current concentration (hot spots). The efficiency of the high voltage pulses depends on the setting of various parameters (pulse amplitude, pulse frequency, burst duration, number of bursts and kind of resistor system). The energy supplied and the resistor length is proportional. The microparticles within the microstructures of the fired resistors will be affected during the supply of the energy of high voltage pulses. This effect is based on the chemical composition of the resistors pastes, the physical construction of the networks of microstructures in the resistor system and the above mentioned pulse parameters. Optimization of pulse parameters allowed to reduce the pulse amplitude to a few hundreds volts. Therefore, trimming of buried resistors in complex hybrid circuits can be accomplished without any damage of adjacent components. By means of this method it is possible to achieve a trimming rate of +-25 percent. The paper focusses on the selection of different pastes (10 Ω/sq ― 10 kΩ/sq) based on manufacturability, LTCC compatibility and refiring behavior. The selected candidates will be evaluated in terms of their trim-sensitivity and stability after trimming. Typical processing conditions for assembly will be applied (reflow, underfill/glop top curing cycles etc.) and a qualification (1000h temperature storage, thermal cycling etc.) will be performed.
机译:将电阻器嵌入衬底中是实现较高组件密度/面积的明智解决方案。通常,低温共烧陶瓷(LTCC)技术可提供此功能。尽管这种机会存在多年,但使用率仍然很低。在LTCC主体中嵌入“外国”材料可能是一个挑战。人们必须找到一种系统,该系统显示与LTCC玻璃和端接器之间几乎没有相互作用,或者在自由烧结期间为胶带提供相称的收缩率。其次,由于烧结周期长,因此无法通过混合浆料和调整烧结轮廓以及随后的烧结/测量来微调目标电阻器值的常用方法。与应用相关的后期/后继步骤也影响最终的阻力。所有这些参数在设计过程中必须已经可用。第三,典型的印刷电阻器容差为+ -25%,不足以适用于大多数电路设计。后者可以通过高压脉冲调整来解决。使用非常短的脉冲可以避免在某些区域中产生较高的焦耳热,因为在某些区域中电流密度较高(热点)。高压脉冲的效率取决于各种参数的设置(脉冲幅度,脉冲频率,脉冲串持续时间,脉冲串数量和电阻系统的种类)。所提供的能量与电阻长度成正比。在提供高压脉冲的能量期间,将影响发射电阻器微结构内的微粒。该效果是基于电阻器浆料的化学成分,电阻器系统中微结构网络的物理构造以及上述脉冲参数。脉冲参数的优化允许将脉冲幅度减小到几百伏。因此,可以完成复杂混合电路中掩埋电阻的微调,而不会损坏相邻组件。通过这种方法,可以实现+ -25%的修整率。本文基于可制造性,LTCC相容性和烧结特性,着重于选择不同的焊膏(10Ω/ sq〜10kΩ/ sq)。修剪后,将根据修剪灵敏度和稳定性评估所选的候选对象。将应用组装的典型加工条件(回流,底部填充/顶部固化周期等),并进行鉴定(1000小时的温度存储,热循环等)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号