首页> 外文会议>ASME InterPack Conference >PHONON BOLTZMANN TRANSPORT BASED ELECTRO-THERMAL ANALYSIS OF NANO-SCALE ASYMMETRICAL DOUBLE-GATE FINFET DEVICE
【24h】

PHONON BOLTZMANN TRANSPORT BASED ELECTRO-THERMAL ANALYSIS OF NANO-SCALE ASYMMETRICAL DOUBLE-GATE FINFET DEVICE

机译:纳米尺度不对称双栅FINFET装置的基于Phonon Boltzmann的电热分析

获取原文

摘要

Due to the increased number of on- chip transistors from VLSI technology scaling, temperature rise and variation within a chip increase rapidly beyond 65 nm technology node. The worst-case power and performance at hot spots limit the overall chip performance. This work uses a non-gray model based on the phonon Boltzmann transport equation (BTE) to compute the temperature rise and distribution in a nano-scale multi-finger asymmetrical double-gate FinFET clock buffer. The BTE simulation is used in the device channel regions to accurately account for phonon boundary scattering and phonon confinement, while the Fourier heat conduction equation is employed in other regions of the device such as the silicon substrate, buried oxide and metal interconnects. Non-uniform Joule heating by electron-phonon scattering is calculated from the dot product of the electric field and the current density from numerical device simulations using TAURUS. The computed results for non-uniform Joule heating are compared with those based on uniform Joule heating, for different percentages of energy release in the optical phonon mode. The simulation results reveal that the maximum junction temperature rise obtained by the BTE simulations with non-uniform Joule heating is much higher than that obtained from the uniform Joule heating if zero optical phonon group velocity is assumed, while the average junction temperature rise is about the same for both cases. With the assumption of zero optical phonon group velocity, simulation results with 100%, 85%, 60%, 35% and 0% of the Joule heating in the optical phonon mode show that the more Joule heating is deposited into optical phone mode, the higher is the junction temperature rise. However, if non-zero optical phonon group velocity is assumed, the maximum junction temperature rise predicted is not significantly higher than the Fourier prediction. This indicates that previously published models which do not account for optical mode group velocity may need to be reconsidered.
机译:由于VLSI技术缩放的片上晶体管数量增加,芯片内的温度升高和芯片内的变化迅速增加超过65nm技术节点。热点的最坏情况和性能限制了整体芯片性能。这项工作采用基于Phonon Boltzmann传输方程(BTE)的非灰色模型来计算纳米级多指不对称双栅FinFET时钟缓冲器中的温度升高和分布。 BTE模拟用于设备通道区域,以准确地考虑声子边界散射和声子限制,而傅里叶导热方程在诸如硅衬底,掩埋氧化物和金属互连的装置的其他区域中采用。通过电子场的点乘积计算通过电子 - 声子散射的非均匀焦耳加热,并且使用金牛座的数值装置模拟的电流密度计算。与基于均匀焦耳加热的那些相比,将计算结果与基于均匀的焦耳加热相比,用于光学声子模式的不同百分比。仿真结果表明,如果假设零光学声子群速度,则由非均匀焦耳加热获得的BTE模拟获得的最大结升温远高于均匀焦耳加热,而平均结温上升是关于两种情况都一样。凭借零光学声子群速度,仿真结果具有100%,85%,60%,35%和0%的光学声子模式的焦耳加热显示,焦耳加热越多,沉积到光学电话模式中,即结升温越高。然而,如果假设非零光学声音组速度,则预测的最大结温上升不会显着高于傅里叶预测。这表示可能需要重新考虑未解释光学模式组速度的先前发布的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号