首页> 外文会议>ECS Meeting >Resistivity and diffusion barrier properties of ZrN in Cu/ZrN/Si system
【24h】

Resistivity and diffusion barrier properties of ZrN in Cu/ZrN/Si system

机译:Cu / ZrN / Si系统中ZrN的电阻率和扩散阻挡性能

获取原文

摘要

Ever since copper replaces alumina, one of the most serious problems has been that copper diffuses fast in silicon and then reacts with Si to form high resistive Cu-2Si compound, leading degradations of the integrated circuits (ICs). In order to successfully integrate Cu metallization into ICs, a diffusion barrier preventing the interdiffusion or reaction between Cu and the adjoining material is necessary. In general, the potential diffusion barriers demand high conductivity, good adhesion, high thermal stability, chemically inert with copper and silicon, low resistivity and lacking of grain boundaries. Transition metals and nitrides are extensively investigated as barrier materials due to their good thermal stability and electrical properties in Cu metallization. The nitride compound series includes HfN. WN, TiN, TaN. and Ta-Si-N and these layers prevented the Cu diffusion only at temperatures below 600 deg C. However, process temperature as high as 700deg C is sometimes required, a more promising diffusion barrier is needed. On the other hand, ZrN possesses the relatively large heat of formation, DELTAH=-87.3 kcal/mol, compared with DELTAH = -80.4 kcal/mol and DELTA H = -60.3 kcal/mol for TiN and TaN, respectively. ZrN as a good barrier in Al/ZrN/Si has also been reported. Therefore, ZrN represents an interesting material of better candidate for the diffusion barrier. In this study, we deposited ZrN by magnetron sputtering on Si(001) substrates to investigate the thickness dependence of electrical resistivity. Then we study the diffusion behaviour of the constituent species in Cu/ZrN/Si stacks during annealing. Finally the diffusion coefficient and activation energy of Cu in the ZrN barrier were determined with various ZrN thickness. Micro structure is used to explain the enhanced barrier properties of the thick ZrN films.
机译:自铜取代氧化铝以来,最严重的问题之一是硅在硅中快速扩散,然后用Si反应形成高电阻Cu-2Si化合物,是集成电路的主要降解(IC)。为了成功地将Cu金属化集成到IC中,需要防止Cu和邻接材料之间的相互扩散或反应的扩散屏障。通常,电位扩散屏障需要高导电性,良好的粘附性,高热稳定性,具有铜和硅的化学惰性,电阻率低,缺乏晶界。由于其在Cu金属化中的良好的热稳定性和电性能,过渡金属和氮化物被广泛地研究了阻挡材料。氮化物化合物系列包括HFN。 Wn,锡,棕褐色。并且TA-Si-N和这些层仅在低于600℃的温度下防止Cu扩散。然而,有时需要处理温度高达700deg C的温度,需要更有前途的扩散屏障。另一方面,与Deltah = -80.4kcal / mol和Delta H = -60.3kcal / mol,ZrN具有相对大的形成热量,Deltah = -87.3 kcal / mol分别用于锡和棕褐色的ΔH= -60.3 kcal / mol。 ZrN作为Al / Zrn / Si的良好障碍也已经报道。因此,ZrN代表了扩散屏障的更好候选者的有趣材料。在这项研究中,我们在Si(001)基板上通过磁控溅射沉积ZrN,以研究电阻率的厚度依赖性。然后,我们在退火期间研究Cu / Zrn / Si堆栈中组成种的扩散行为。最后,用各种ZrN厚度确定ZrN屏障中Cu的扩散系数和激活能量。微结构用于解释厚ZrN薄膜的增强屏障性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号