【24h】

Reliability of transfer mold-underfilled flip chip devices

机译:转移模具填充倒装芯片装置的可靠性

获取原文

摘要

It is well known that underfilling a flip chip device with a capillary liquid encapsulant results in a substantial improvement in device reliability. The use of capillary underfills has therefore become commonplace in flip chip technology. However, increasing reliability requirements and the ever-present need to cost reduce the package are driving the industry to consider alternate technologies, such as no-flow underfills or fast-flow, snap cure encapsulants. Recently the development of suitably engineered epoxy molding compounds designed to encapsulate (including underfilling) flip chip devices have been investigated and proven to be technically feasible. This approach takes advantage of the production speeds of transfer molding and can offer significant productivity enhancements over the traditional liquid underfill process for certain applications. The use of the transfer underfill/overmold process eliminates two sequential encapsulation steps (e.g. underfill and glob top). By the use of the molded flip chip technology, the high volume production rates characteristic of conventional transfer molding can be obtained, along with the added advantage of the utilization of the installed capital base. In this study the effect of no-clean flux type used in the flip chip assembly process on the interfacial adhesion of molded flip chip devices was examined by scanning acoustic microscopy. Two different perimeter-bumped die with a 2.5 mil offset (either 170 by 215mi1 or 340 by 430mi1 in size) were subjected to various argon plasma cleaning times. For the large die assembled with the high residue no-clean flux, short cleaning times (3 min) lead to initial mold compound-substrate interface delamination in areas away from the gap area. The plasma cleaning process may be removing residue from underneath the flip chip die and redepositing it on the substrate nearby. Increasing the plasma cleaning time eliminated this delamination. Molded flip chip test assemblies survive two thousand thermal shock cycles of -55°C to +125°C. JEDEC Level 3 performance with 240°C reflow is also achieved. In this paper the performance of several epoxy transfer molding compounds developed for this application will be discussed.
机译:众所周知,在具有毛细管液体密封剂的倒装芯片装置底部填充导致器件可靠性的显着提高。因此,使用毛细管底部填充物在倒装芯片技术中变得普遍。然而,提高可靠性要求和持续的需要降低包装的需求正在推动行业考虑替代技术,例如无流量的底部填充或快速流动,捕获固化密封剂。最近,已经研究了设计用于封装(包括底部填充)倒装芯片装置的适当工程的环氧树脂成型化合物并证明在技术上是可行的。这种方法利用转印成型的生产速度,可以针对某些应用的传统液体底部填充工艺提供显着的生产率增强。转移底部填充/多模过程的使用消除了两个连续的封装步骤(例如,底部填充物和地板顶部)。通过使用模制的倒装芯片技术,可以获得传统转移成型的大容量产生速率,以及利用安装的基本基座的附加优点。在这项研究中,通过扫描声学显微镜检查倒装芯片组装过程中使用的倒装芯片组装过程中使用的无清洁磁通型对模制倒装芯片装置的界面粘附。与2.5密耳偏移(170×215mi1或340×430mi1的大小)进行两种不同的周边凸块模具进行各种氩等离子体清洁时间。对于用高残留的无清洁通量组装的大型模具,短清洁时间(3分钟)导致初始模具复合衬底接口分层远离间隙区域的区域。等离子体清洁过程可以从倒装芯片下面的下部除去残留物,并在附近的基板上重新停用。增加血浆清洁时间消除了这种分层。模压倒装芯片测试组件在-55°C至+ 125°C的两千次热冲击循环中存活。 JEDEC水平3款240°C回流的性能也得到了实现。本文将讨论用于该应用的几种用于该应用的环氧转移模塑化合物的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号