【24h】

RELIABILITY OF TRANSFER MOLD-UNDERFILLED FLIP CHIP DEVICES

机译:转移未铸模的倒装芯片的可靠性

获取原文
获取原文并翻译 | 示例

摘要

It is well known that underfilling a flip chip device with a capillary liquid encapsulant results in a substantial improvement in device reliability. The use of capillary underfills has therefore become commonplace in flip chip technology. However, increasing reliability requirements and the ever-present need to cost reduce the package are driving the industry to consider alternate technologies, such as no-flow underfills or fast-flow, snap cure encapsulants. Recently the development of suitably engineered epoxy molding compounds designed to encapsulate (including underfilling) flip chip devices have been investigated and proven to be technically feasible. This approach takes advantage of the production apeeds of transfer molding and can offer significant productivity enhancements over the traditional liquid underfill process for certain applications. The use of the transfer underfill/overmold process eliminates two sequential encapsulation steps (e.g. underfill and glob top). By the use of the molded flip chip technology, the high volume production rates characteristic of conventional transfer molding can be obtained, along with the added advantage of the utilization of the installed capital base. In this study the effect of no-clean flux type used in the flip chip assembly process on the interfacial adhesion of molded flip chip devices was examined by scanning acoustic microscopy. two different perimeter-bumped die with a 2.5 mil offset (either 170 by 215mil or 340 by 430mil in size) were subjected to various argon plasma cleaning times. For the large die assembled with the high residue no-clean flux, short cleaning times (3 min) lead to initial mold compound-substrate interface delamination in areas away from the gap area. The plasma cleaning process may be removing residue from underneath the flip chip die and redepositing it on the substrate nearby. Increasing the plasma cleaning time eliminated this delamination. Molded flip chip test assemblies survive two thousand thermal shock cycles of -55℃ to +125℃. JEDEC Level 3 performance with 240℃ reflow is also achieved. In this paper the performance of several epoxy transfer molding compounds developed for this application will be discussed.
机译:众所周知,用毛细管液体密封剂对倒装芯片器件进行底部填充会大大提高器件的可靠性。因此,在倒装芯片技术中,毛细管底部填充的使用已变得司空见惯。但是,不断提高的可靠性要求以及降低包装的不断提高的成本需求,促使业界开始考虑采用其他技术,例如无流动性底部填充剂或快速流动性,快速固化密封剂。最近,已经研究了设计用于封装(包括底部填充)倒装芯片器件的适当工程设计的环氧模塑化合物的开发,并证明在技术上是可行的。这种方法利用了传递模塑技术的先进生产能力,可以为某些应用提供比传统液体底部填充工艺明显提高的生产率。转移底部填充/包覆成型工艺的使用省去了两个连续的封装步骤(例如底部填充和球状顶部)。通过使用模制的倒装芯片技术,可以获得常规传递模塑的高批量生产特性,同时还具有利用已安装资金基础的额外优势。在这项研究中,通过扫描声学显微镜检查了倒装芯片组装过程中使用的免清洗助焊剂类型对模制倒装芯片器件的界面粘合的影响。对两个具有250密耳偏移量(尺寸为170 x 215密耳或340 x 430密耳)的不同的凸点模具进行了不同的氩等离子体清洁时间。对于组装有高残留免清洗助焊剂的大型模具,较短的清洁时间(3分钟)会导致在远离间隙区域的区域中初始的模塑料与基材界面分层。等离子体清洁过程可能是从倒装芯片管芯下方去除残留物,然后将其重新沉积在附近的基板上。增加等离子清洗时间可以消除这种分层。模制的倒装芯片测试组件可以承受-55℃至+ 125℃的2000次热冲击循环。 JEDEC 3级性能也达到了240℃的回流焊。在本文中,将讨论为该应用开发的几种环氧传递模塑化合物的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号