首页> 外文会议>International conference on applications of photonic technology >Thickness and composition monitoring of thin layers of InGaAs in InP/InGaAsP epitaxial growths using FESEM and integrated SIMS profiles
【24h】

Thickness and composition monitoring of thin layers of InGaAs in InP/InGaAsP epitaxial growths using FESEM and integrated SIMS profiles

机译:使用FESEM和集成SIMS型材在INP / IngaASP外延生长中InGaAs薄层的厚度和成分监测

获取原文

摘要

A thin layer of INGaAs is the critical photo-absorbing layer in epitaxially grown layers used in the monolithic integration of active photodetectors and a passive mux/demux. This thin InGaAs active layer requires tight thickness control that is beyond the accuracy and reproducibility of conventional thickness measurement techniques such as a step-height profilometer. In order to address this issue, a technique using Field Emission Scanning Electron Microscopy (FESEM) combined with a chemical delineation etch (use to reveal thin layers) was developed. The etch used was dilute H_2SO_4:H_2O_2:H_2O which will etch all ternaries and quaternaries but does not etch InP. The selectivity of this etch, between the ternary InGaAs material and the InP, was measured to be approximately 500:1. We found that using the FESEM technique provided a minimum measurable thickness of approximately 50 nm, with a precision of approximately 5 nm. The accuracy of our measurement was verified by TEM analysis on selected samples. We also found that SIMS data, obtained from an independent analytical laboratory and originally performed to monitor doping levels in the layers, could be used to monitor the thickness and/or the variations in composition of the thin InGaAs photo-absorbing layer. The key is to make use of the integrated SIMS peaks rather than the full-width-half-maximum (FWHM) of the peaks. For an InGaAs layer, the integrated arsenic SIMS signal varies with the layer thickness and the arsenic concentration. The variations in either of these, in different growth batches, can be detected by SIMS. We found that using integrated SIMS profiles gives a fully independent thickness and/or compositional control monitor to compare with our FESEM measurements and can be used as a trusted control fo the layer quality. This comes at no additional cost since in our case, SIMS profiles are required to monitor doping levels. In this paper, a correlation is shown between the thickness of a thin layer of InGaAs measured by FESEM and the integrated arsenic SIMS peaks from several independent epitaxial growths. Deviations from the norm are explained from small thickness or compositional changes as supported by FESEM and photo-luminescence measurements.
机译:的InGaAs的薄层是在有源光电探测器的单片集成和无源MUX / DEMUX使用外延生长层的临界光吸收层。该薄的InGaAs活性层需要紧厚度控制,超出的准确性和常规厚度测量技术再现诸如台阶高度轮廓。为了解决这个问题,利用场发射扫描电子显微镜(FESEM)用化学蚀刻划定(使用透露薄层)相结合的技术开发。所用的蚀刻是稀H_2SO_4:双氧水:H_2O这会腐蚀所有ternaries和季铵盐而不蚀刻的InP。该蚀刻,三元InGaAs系材料和InP之间的选择性,经测量为约500:1。我们发现,使用FESEM技术提供的大约50nm的最小可测量的厚度,具有大约5nm的精度。我们测量的精度是通过对抽取的样品TEM分析验证。我们还发现,SIMS数据,从一个独立的分析实验室获得和最初在层监视器掺杂水平进行,可以用于监视的厚度和/或在薄InGaAs光吸收层的组合物中的变化。关键是要利用集成SIMS峰而非峰的全宽半最大值(FWHM)的。对于InGaAs层,集成砷SIMS信号与所述层的厚度和砷浓度而变化。在任一这些的变型中,在不同的生长批次可通过SIMS检测。我们发现,使用集成的SIMS分布给出了一个完全独立的厚度和/或成分控制监视与我们的扫描电镜测量数据进行比较,并可以作为一个值得信赖的控制FO层质量。这都在不增加额外成本,因为在我们的情况下,需要SIMS分布监测掺杂水平。在本文中,是砷化铟镓的薄的层的厚度之间所示的相关测量通过FESEM和集成的砷从几个独立的外延生长SIMS峰。从规范的偏差是从较小的厚度或组成的变化说明通过FESEM和光致发光测量值作为支撑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号