首页> 外文会议>Internatioanl Symposium for Testing and Failure Analysis >Guidelines for two-dimensional dopant profiling using SCM
【24h】

Guidelines for two-dimensional dopant profiling using SCM

机译:使用SCM的二维掺杂剂分析指南

获取原文

摘要

The two-dimensional (2D) profiling of the dopant concentration is of great importance not only for the development of new semiconductor devices (see e.g. ITRS99) but also for the failure analysis of state-of-the-art semiconductor devices. The scanning capacitance microscope (SCM [2-5]) seems to be the most promising tool concerning 2D-dopant profiling. SCM profits from three considerable advantages: it is commercially available, it offers a high spatial resolution and it is easy to use. On the other hand, many SCM operators complain about a difficult interpretation of the result of SCM measurements. The objective of this work is to give a detailed insight into scanning capacitance microscopy and to work out some guidelines for the usage of SCM in semiconductor failure analysis. The starting point is the explanation of the influence of the capacitance sensor. The demand for a high spatial resolution and therefore a small probing area (r < 50nm), pushes the required sensitivity of the sensor to a value of more than 100μV/aF. This condition leads to a large probing voltage of more than 5000mV and therefore to a reduction of the lateral resolution. Only an optimum adjustment of the sensor gives us an optimum lateral resolution. In addition, SCM differs strongly from conventional CV measurements, because of the 3D geometry of the sample and the probe. Whereas the conventional method relies on the accurate determination of the probing area and the capacitance, SCM-CV curves show the influence of a large stray capacitance and an effective voltage-dependent area, due to the edge effects of the 3D geometry. The influence of the shape of the probe was examined by using a 3D device simulator (TCAD). Figure 7b) shows the SCM output versus the doping concentration. A comparison of experimental and theoretical results shows an excellent correspondence, assuming a proper sample preparation technique. This technique must offer an extremely smooth surface (sample roughness of less than 0.5nm{sub}(RMS)), a high quality oxide with a thickness on the order of 3nm and a surface and oxide with a low charge density (less than 10{sup}10cm{sup}(-2)), Such a preparation method was developed and will be presented as a guideline for proper SCM measurements. Moreover, we like to present recent insights into the dependence of the lateral resolution on the dopant concentration and the probing area. The combination of an optimal preparation and an optimal choice of voltages enables us to use a simple deconvolution procedure that works even for pn-junctions.
机译:掺杂剂浓度的二维(2D)分析不仅具有重要的重要性,不仅可以用于开发新的半导体器件(参见例如ITRS99),而且非常重要,而且很重要,而且还针对最先进的半导体器件的故障分析。扫描电容显微镜(SCM [2-5])似乎是有关2D掺杂剂分析的最有希望的工具。 SCM利润从三种相当大的优点:商业上可用,提供高空间分辨率,易于使用。另一方面,许多SCM运算符抱怨对SCM测量结果的难以解释。这项工作的目的是详细介绍扫描电容显微镜,并解决了解半导体故障分析中SCM的一些指导方针。起始点是对电容传感器的影响的说明。对高空间分辨率的需求以及小探测区域(R <50nm),将传感器的所需灵敏度推动到大于100μV/ af的值。该条件导致大于5000mV的大的探测电压,因此减小横向分辨率。仅最佳调整传感器为我们提供了最佳的横向分辨率。此外,由于样品和探针的3D几何形状,SCM与常规CV测量相差。然而,传统方法依赖于探测区域和电容的精确确定,SCM-CV曲线由于3D几何形状的边缘效应而显示出大的杂散电容和有效电压依赖性区域的影响。通过使用3D器件模拟器(TCAD)检查探针形状的影响。图7B)显示了SCM输出与掺杂浓度。假设适当的样品制备技术,实验和理论结果的比较显示出优异的对应关系。该技术必须提供极光滑的表面(小于0.5nm {sub}(rms)的样品粗糙度),高质量的氧化物,厚度为3nm,表面和氧化物低电荷密度(小于10) {SUP} 10CM {SUP}( - 2)),这种制备方法是开发的,并将作为适当的SCM测量的指导呈现。此外,我们希望最近对横向分辨率依赖于掺杂剂浓度和探测区域的依赖。最佳准备和最佳的电压选择的组合使我们能够使用即使对于PN结而工作的简单解构过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号