首页> 外文会议>Internatioanl Symposium for Testing and Failure Analysis >Characterization and isolation techniques in silicon on insulator technology microprocessor designs
【24h】

Characterization and isolation techniques in silicon on insulator technology microprocessor designs

机译:绝缘技术微处理器设计中硅中硅的特征与隔离技术

获取原文

摘要

Silicon on Insulator (SOI) designed microprocessors offer first order benefits of lower power operation, reduced junction capacitance, and higher device densities; all combining in significant improvements in device performance and faster circuit level speeds. Integrating SOI technology with lower resistance ( < 2μΩ-cm )copper Back End of Line (BEOL) interconnections instead of alurnanumcopper BEOL interconnection (> 3μΩ-cm resistance) offers further enhancements in microprocessor performance. Electrical measurements of the sub 0.25μm sized NFET and PFET devices contained in the embedded cells of these SOI designs pose new demands in developing alternative techniques and methods for both electrical characterization and physical analysis. MOSFET devices in IBM 501 designs do not tie the FET's body to source but instead are allowed to "float" because of the insulating layer used in this technology. Conventional methods of scanning electron microscopy, transmission electron microscopy, or focused ion beam microscopy where energetic (>30kv) electron or ion beams are employed can produce unwanted effects affecting electrical and physical analysis. To minimize these effects, modifications in electrical characterization techniques as well as changes in FIB circuit analysis and sample preparation must be made to avoid the introduction of misleading electrical measurement results and artifacts in physical analysis results. Newer electrical characterization techniques such as atomic force microscopy imaging of submicron device features and physical AFM electrical probe contact measurements may be necessary when characterizing junction areas above the SOI insulating layer. Scanning capacitance microscopy is another technique successfully employed in pinpointing specific submicron device features in the embedded array cells. Specific sites less than 0.3μm have been identified this way that correlate to anomalous electrically measured results. Subsequent transmission electron microscopy accuracy is further enhanced by this pinpointing technique. This successful localization permits enhanced TEM analysis involving electron energy loss spectroscopy (EELS) to detect the presence of low atomic number elements. The use of FIB to deposit chemical vapor deposited tungsten probe pads as an aid in assisting submicron device probing or circuit deletion/isolation of levels near the SOI insulating layer may induce unwanted charge build-up as well as introduce gallium ion leakage inimical to SOI designs. Similarly, changes in TEM sample preparation techniques must be adopted to avoid introducing induced artifacts and physical damages. In those instances where samples are thinned via FIB sectioning, the same concerns exist as described earlier (ie. introduction of unwanted charge buildup and/or gallium induced leakage paths). Specific features in CMOS latching circuits of SOI designs can now be pinpointed by using these modified electrical techniques, aided by the use of scanning capacitance microscopy and enhanced TEM physical analysis/sample preparation techniques.
机译:绝缘体上的硅(SOI)设计的微处理器提供较低功率运行,减少的连接电容和更高的设备密度的第一订单优势;所有组合都在设备性能和更快的电路电平速度的显着改进中。通过较低电阻(<2μΩ-cm)铜背端(BEOL)互连而不是Alurnumcopper BEOL互连(>3μΩ-cm电阻)的集成SOI技术提供了微处理器性能的进一步增强。这些SOI设计中包含的嵌入式电池中包含的亚025μm尺寸的NFET和PFET器件的电测量构成了开发替代技术和用于电学特性和物理分析的方法的新要求。 IBM 501设计中的MOSFET器件不会将FET的身体绑定到源,而是由于该技术中使用的绝缘层而被允许“浮动”。扫描电子显微镜的常规方法,透射电子显微镜或聚焦离子束显微镜,其中采用能量(> 30kV)电子或离子束可以产生影响电气和物理分析的不必要的效果。为了最大限度地减少这些效果,必须对电学表征技术的修改以及FIB电路分析和样品准备的变化来避免在物理分析结果中引入误导性电气测量结果和伪影。当在SOI绝缘层上方的结区域时,可能需要诸如亚微米器件特征和物理AFM电探测接触测量的原子力显微镜成像等较新的电学表征技术。扫描电容显微镜是在嵌入式阵列单元中定位特定的亚微米器件功能的另一技术成功使用。已经鉴定了小于0.3μm的特定位点,以这种方式与异常电测量结果相关。随后的透射电子显微镜精度通过该精确的技术进一步增强。这种成功的定位允许增强涉及电子能损光谱(EEL)的TEM分析来检测低原子数元素的存在。使用FIB将化学气相沉积钨探针垫作为辅助亚微米器件探测或电路删除/隔离SOI绝缘层附近的水平可能会诱导不需要的电荷积累以及以SOI设计的镓离子泄漏引入镓离子泄漏。类似地,必须采用TEM样品制备技术的变化以避免引起诱导的伪影和物理损害。在通过FIB切片变薄样本的那些情况下,如前所述存在相同的问题(即,引入不需要的电荷累积和/或镓诱导的泄漏路径)。通过使用这些改进的电技术,可以通过使用扫描电容显微镜和增强的TEM物理分析/样品制备技术来精确定位SOI设计的CMOS锁存电路的具体特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号