首页> 外文会议>26th International Symposium for Testing and Failure Analysis, Nov 12-16, 2000, Bellevue, Washington >Characterization and Isolation Techniques in Silicon on Insulator Technology Microprocessor Designs
【24h】

Characterization and Isolation Techniques in Silicon on Insulator Technology Microprocessor Designs

机译:绝缘子技术微处理器设计中硅的表征和隔离技术

获取原文
获取原文并翻译 | 示例

摘要

Silicon on Insulator (SOI) designed microprocessors offer first order benefits of lower power operation, reduced junction capacitance, and higher device densities; all combining in significant improvements in device performance and faster circuit level speeds . Integrating SOI technology with lower resistance ( < 2 u Ω -cm )copper Back End of Line (BEOL) interconnections instead of aluminum-copper BEOL interconnection ( > 3 μ Ω -cm resistance ) offers further enhancements in microprocessor performance. Electrical measurements of the sub 0.25μm sized NFET and PFET devices contained in the embedded cells of these SOI designs pose new demands in developing alternative techniques and methods for both electrical characterization and physical analysis. MOSFET devices in IBM SOI designs do not tie the FET's body to source but instead are allowed to "float" because of the insulating layer used in this technology. Conventional methods of scanning electron microscopy, transmission electron microscopy, or focused ion beam microscopy where energetic ( >30kV) electron or ion beams are employed can produce unwanted effects affecting electrical and physical analysis. To minimize these effects, modifications in electrical characterization techniques as well as changes in FIB circuit analysis and sample preparation must be made to avoid the introduction of misleading electrical measurement results and artifacts in physical analysis results. Newer electrical characterization techniques such as atomic force microscopy imaging of submicron device features and physical AFM electrical probe contact measurements may be necessary when characterizing junction areas above the SOI insulating layer. Scanning capacitance microscopy is another technique successfully employed in pinpointing specific submicron device features in the embedded array cells. Specific sites less than 0.3μm have been identified this way that correlate to anomalous electrically measured results. Subsequent transmission electron microscopy accuracy is further enhanced by this pinpointing technique. This successful localization permits enhanced TEM analysis involving electron energy loss spectroscopy (EELS) to detect the presence of low atomic number elements. The use of FIB to deposit chemical vapor deposited tungsten probe pads as an aid in assisting submicron device probing or circuit deletion/isolation of levels near the SOI insulating layer may induce unwanted charge build-up as well as introduce gallium ion leakage inimical to SOI designs. Similarly, changes in TEM sample preparation techniques must be adopted to avoid introducing induced artifacts and physical damages. In those instances where samples are thinned via FIB sectioning, the same concerns exist as described earlier (ie. introduction of unwanted charge buildup and/or gallium induced leakage paths). Specific features in CMOS latching circuits of SOI designs can now be pinpointed by using these modified electrical techniques, aided by the use of scanning capacitance microscopy and enhanced TEM physical analysis/sample preparation techniques.
机译:绝缘体上硅(SOI)设计的微处理器具有较低的工作功耗,减小的结电容和较高的设备密度等一阶优势。所有这些都极大地改善了器件性能和更快的电路速度。将SOI技术与低电阻(<2 uΩ-cm)铜线后端(BEOL)互连而不是铝-铜BEOL互连(> 3μΩ-cm电阻)集成在一起,可以进一步提高微处理器性能。这些SOI设计的嵌入式单元中包含的0.25μm以下NFET和PFET器件的电学测量对开发用于电学表征和物理分析的替代技术和方法提出了新的要求。 IBM SOI设计中的MOSFET器件不将FET的主体与源结合在一起,而是由于该技术中使用的绝缘层而被允许“浮动”。使用高能(> 30kV)电子或离子束的扫描电子显微镜,透射电子显微镜或聚焦离子束显微镜的常规方法会产生影响电和物理分析的不良影响。为了最大程度地减少这些影响,必须对电特性技术进行修改,以及在FIB电路分析和样品制备中进行更改,以避免在物理分析结果中引入误导性的电测量结果和伪影。当表征SOI绝缘层上方的结区域时,可能需要更新的电学表征技术,例如亚微米器件特征的原子力显微镜成像和物理AFM电探针接触测量。扫描电容显微镜技术是另一种成功用于精确定位嵌入式阵列单元中特定亚微米器件特征的技术。通过这种方法可以识别出小于0.3μm的特定位点,这些位点与异常的电测量结果相关。通过这种精确定位技术,可以进一步提高随后的透射电子显微镜的准确性。这种成功的定位技术可以实现增强的TEM分析,包括电子能量损失谱(EELS),以检测低原子序数元素的存在。使用FIB沉积化学气相沉积的钨探针垫来辅助亚微米器件探测或SOI绝缘层附近的电平的电路删除/隔离的辅助可能会引起有害的电荷积聚,并引入对SOI设计不利的镓离子泄漏。同样,必须采用TEM样品制备技术的变化,以避免引入人工制品和物理损坏。在通过FIB切片稀释样品的情况下,存在与前面所述相同的问题(即引入不需要的电荷积累和/或镓引起的泄漏路径)。现在,可以通过使用这些改进的电气技术,借助扫描电容显微镜和增强的TEM物理分析/样品制备技术,来精确定位SOI设计的CMOS锁存电路中的特定功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号