首页> 外文会议>IEEE International Conference on Robotics and Automation >Fault tolerant control for omni-directional mobile platforms with 4 mecanum wheels
【24h】

Fault tolerant control for omni-directional mobile platforms with 4 mecanum wheels

机译:具有4个麦克纳姆轮的全方位移动平台的容错控制

获取原文

摘要

This paper addresses the fault tolerant control problem for an omni-directional mobile platform with four mecanum wheels moving on a well-known flat and constrained workspace with static obstacles. As a fault, we consider the case where a wheel cannot be actuated and hence it rotates freely around its drive shaft owing to the friction with the flat surface. Depending on the multitude of the faults, a robust motion control scheme is developed that achieves any desired configuration within the operational workspace, avoids collisions with the obstacles and does not violate the workspace boundaries despite the presence of dynamic model uncertainties. The challenge with respect to the current state of the art in fault tolerant control for such mobile platforms, where only one faulty wheel has been considered (i.e., the platform still retains its full actuation capabilities), lies in completely compensating up to two faulty wheels (i.e., the model becomes underactuated in this way) despite the dynamic model uncertainty and the presence of static obstacles in the workspace. Navigation Functions are innovatively incorporated with adaptive control techniques to deal with the parametric uncertainty in the robot dynamics, extending thus greatly the current state of the art in robust motion planning and collision avoidance by studying second order dynamics with parametric uncertainty. Finally, an extensive experimental study clarifies the proposed method and verifies its efficiency in various faults.
机译:本文解决了具有四个麦克纳姆轮的全方位移动平台的容错控制问题,该平台在著名的平坦且受约束的带有静态障碍物的工作空间中移动。作为故障,我们考虑一种情况,即由于与平坦表面的摩擦力而导致车轮无法致动,因此车轮绕其驱动轴自由旋转。取决于大量故障,开发了一种鲁棒的运动控制方案,该方案可在运行工作空间内实现任何所需的配置,避免与障碍物发生碰撞,并且即使存在动态模型不确定性也不会违反工作空间边界。对于此类移动平台的容错控制而言,当前的技术挑战是,仅考虑了一个故障轮(即,平台仍保留其全部致动能力),这是完全补偿多达两个故障轮的挑战。尽管存在动态模型不确定性和工作空间中存在静态障碍物,但模型仍会以这种方式致动(即,模型将无法充分发挥作用)。导航功能与自适应控制技术进行了创新结合,以处理机器人动力学中的参数不确定性,从而通过研究具有参数不确定性的二阶动力学来极大地扩展了鲁棒运动规划和避免碰撞方面的当前技术水平。最后,广泛的实验研究澄清了所提出的方法并验证了其在各种故障中的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号