首页> 外文会议>ASME InterPack conference;IPACK2009 >DEVICE SIMULATION OF MECHANICAL STRESS EFFECTS ON ELECTRICAL CHARACTERISTICS OF nMOSFETs: IMPACT OF LOCAL STRESS IN nMOSFETs
【24h】

DEVICE SIMULATION OF MECHANICAL STRESS EFFECTS ON ELECTRICAL CHARACTERISTICS OF nMOSFETs: IMPACT OF LOCAL STRESS IN nMOSFETs

机译:机械应力对nMOSFET电气特性的器件仿真:nMOSFET局部应力的影响

获取原文

摘要

An electrical characteristic of a semiconductor device suffers from a residual stress during various packaging processes. Very few attempts have been made at developing a numerical method for evaluating such problems. Therefore, the objective of this study is to evaluate stress-induced effects by numerical simulation. That is, the effects of stress on the electrical characteristics of n-type Metal Oxide Semiconductor Field Effect Transistors (nMOSFETs) with a 85nm gate length were evaluated by mechanical stress simulation and drift-diffusion device simulation (multi-physics simulation). The device simulation model used includes the electron mobility model that considers the stress-induced effects. This study focused on the impact of the stress distribution in the nMOSFETs. The stress distribution in the nMOSFETs was considered in conducting the multi-physics simulation. As determined by mechanical stress simulation, stress concentrated around the STI, and the effect of such stress concentration reached the channel region of the nMOSFETs. Then, the drift-diffusion device simulation was carried out. The stress distribution in the nMOSFETs obtained by mechanical stress simulation was used as the stress effect in the device simulation model. As determined by device simulation, the drain current decreased under the estimated residual stress. The drain-currentshift corresponded quantitatively to the stress at the region of the channel. It was demonstrated that the multi-physics simulation is essential for evaluating the effect of stress on electrical characteristics of a semiconductor device.
机译:半导体器件的电特性在各种封装过程中遭受残余应力。在开发用于评估此类问题的数值方法方面,几乎没有进行任何尝试。因此,本研究的目的是通过数值模拟来评估应力引起的影响。也就是说,通过机械应力模拟和漂移扩散装置模拟(多物理场模拟)评估了应力对栅极长度为85nm的n型金属氧化物半导体场效应晶体管(nMOSFET)的电特性的影响。所使用的器件仿真模型包括考虑了应力诱发效应的电子迁移率模型。这项研究集中在nMOSFET应力分布的影响上。在进行多物理场仿真时,考虑了nMOSFET中的应力分布。如通过机械应力模拟确定的那样,应力集中在STI周围,并且这种应力集中的影响达到了nMOSFET的沟道区域。然后,进行了漂移扩散装置的仿真。通过机械应力仿真获得的nMOSFET中的应力分布被用作器件仿真模型中的应力效应。由器件仿真确定,漏极电流在估计的残余应力下下降。漏极电流 位移定量地对应于通道区域的应力。结果表明,多物理场仿真对于评估应力对半导体器件电特性的影响至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号