首页> 外文会议>IEEE Electron Devices Technology and Manufacturing Conference >Simulation and Design of Step-Etched Junction Termination Extensions for GaN Power Diodes
【24h】

Simulation and Design of Step-Etched Junction Termination Extensions for GaN Power Diodes

机译:GaN功率二极管阶梯蚀刻结终止扩展的仿真和设计

获取原文

摘要

Proper edge termination is required to reach large blocking voltages in vertical power devices. Limitations in selective area p-type doping in GaN restrict the types of structures that can be used for this purpose. A junction termination extension (JTE) can be employed to reduce field crowding at the junction periphery where the charge in the JTE is designed to sink the critical electric field lines at breakdown. One practical way to fabricate this structure in GaN is by a step-etched single-zone or multi-zone JTE where the etch depths and doping levels are used to control the charge in the JTE. The multi-zone JTE is beneficial for increasing the process window and allowing for more variability in parameter changes while still maintaining a designed percentage of the ideal breakdown voltage. Impact ionization parameters reported in literature for GaN are compared in a simulation study to ascertain the dependence on breakdown performance. Two 3-zone JTE designs utilizing different impact ionization coefficients are compared. Simulations confirm that the choice of impact ionization parameters affects both the predicted breakdown of the device as well as the fabrication process variation tolerance for a multi-zone JTE. Regardless of the impact ionization coefficients utilized, a step-etched JTE has the potential to provide an efficient, controllable edge termination design.
机译:需要适当的边缘端接,以在垂直功率设备中达到较大的阻断电压。 GaN中选择性区域p型掺杂的限制限制了可用于此目的的结构类型。可以使用结终端扩展(JTE)来减少结外围的电场拥挤,在结外围,JTE中的电荷被设计为击穿击穿临界电场线。在GaN中制造该结构的一种实用方法是逐步蚀刻单区或多区JTE,其中蚀刻深度和掺杂水平用于控制JTE中的电荷。多区域JTE有利于增加工艺窗口并允许参数变化更多地变化,同时仍保持理想击穿电压的设计百分比。在模拟研究中,对文献中报道的GaN碰撞电离参数进行了比较,以确定对击穿性能的依赖性。比较了两种利用不同碰撞电离系数的3区JTE设计。仿真证实,碰撞电离参数的选择会影响器件的预计故障以及多区域JTE的制造工艺变化容差。无论使用何种碰撞电离系数,阶梯蚀刻JTE都有可能提供有效,可控的边缘终端设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号