首页> 外文会议>International conference on computer design >Resilient, UAV-embedded real-time computing
【24h】

Resilient, UAV-embedded real-time computing

机译:弹性,无人机嵌入式实时计算

获取原文

摘要

In this paper, we propose a hierarchical computational system architecture to support the target domain of realtime mobile computing in the context of unmanned aerial vehicles (UAVs). The overall architectural vision includes support for system resilience in the presence of uncertainties in the operational environment of surveillance UAVs. We report measurement-based results that are obtained from a UAV proxy demonstration apparatus. The apparatus consists of a Raspberry Pi (RPi) board that serves as an on-board UAV computer, working with support from a laptop that serves as the on-ground computing infrastructure where an operator "consumes" video information received from the UAV. We quantify the gap between the on-board UAV camera frame rate (input) and the on-ground operator-observed frame rate (output) for a specialized class of computer vision applications germane to the UAV-based aerial surveillance domain. The goal is to keep the frame rate observed by the ground operator as close (or ideally equal) to the on-board UAV camera frame rate (i.e. to preserve the real-time aspect) despite the unstable bandwidth availability in the channel connecting both ends. The proposed hierarchical approach significantly outperforms two considered baselines: one in which computation takes place entirely on the UAV computer and another in which computation takes place entirely on the ground. This improved performance is due to a more balanced resource sharing between the on-board UAV computer and UAV-to-ground communication channel. Later, we show how the observed frame rate improves when the RPi board is replaced with an NVIDIA Jetson TK1 board. Based on the observations gleaned from these "proxy" experiments, we sketch the fundamentals of our ongoing work in model-based predictive analysis of resilient "UAV swarm" computational architectures of the future.
机译:在本文中,我们提出了一种分层计算系统架构,以支持在无人驾驶飞行器(UAV)的上下文中实时移动计算的目标领域。整体架构愿景包括在监测无人机运营环境中存在不确定性存在的系统恢复性的支持。我们报告了从UAV代理示范设备获得的基于测量结果。该装置由覆盆子PI(RPI)板组成,该板用作车载UAV计算机,与一台支持的笔记本电脑一起使用,该膝上型计算机用于接地计算基础设施,其中操作员“消耗”从UAV接收的视频信息。我们量化了在基于UV的空中监视结构域的专用类计算机视觉应用程序锗烷的电路UAV相机帧速率(输入)与地面操作员观察帧速率(输出)之间的差距。目标是将地面运算符观察到的帧速率,尽管在连接两端的通道中不稳定的带宽可用性,但是在板上UAV相机帧速率(即保留实时方面)的帧速率。所提出的分层方法显着优于两种考虑的基线:其中计算完全在UAV计算机上进行的一个,其中计算完全在地面上进行。这种改进的性能是由于载板上的UAV计算机和UAV到地面通信信道之间更平衡的资源共享。后来,我们展示了当RPI板用NVIDIA Jetson TK1板替换时,观察到的帧速率如何提高。根据从这些“代理”实验收集到的意见,我们勾画我们正在进行的工作的基本面的弹性“无人机群”未来的计算架构基于模型的预测分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号