首页> 外文期刊>Future generation computer systems >A resilient and distributed near real-time traffic forecasting application for Fog computing environments
【24h】

A resilient and distributed near real-time traffic forecasting application for Fog computing environments

机译:雾计算环境的弹性分布式近实时流量预测应用程序

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose an architecture for a city-wide traffic modeling and prediction service based on the Fog Computing paradigm. The work assumes an scenario in which a number of distributed antennas receive data generated by vehicles across the city. In the Fog nodes data is collected, processed in local and intermediate nodes, and finally forwarded to a central Cloud location for further analysis. We propose a combination of a data distribution algorithm, resilient to back-haul connectivity issues, and a traffic modeling approach based on deep learning techniques to provide distributed traffic forecasting capabilities. In our experiments, we leverage real traffic logs from one week of Floating Car Data (FCD) generated in the city of Barcelona by a road-assistance service fleet comprising thousands of vehicles. FCD was processed across several simulated conditions, ranging from scenarios in which no connectivity failures occurred in the Fog nodes, to situations with long and frequent connectivity outage periods. For each scenario, the resilience and accuracy of both the data distribution algorithm, and the learning methods were analyzed. Results show that the data distribution process running in the Fog nodes is resilient to back-haul connectivity issues and is able to deliver data to the Cloud location even in presence of severe connectivity problems. Additionally, the proposed traffic modeling and forecasting method exhibits better behavior when run distributed in the Fog instead of centralized in the Cloud, especially when connectivity issues occur that force data to be delivered out of order to the Cloud. (C) 2018 The Authors. Published by Elsevier B.V.
机译:在本文中,我们提出了一种基于Fog Computing范式的城市范围交通建模和预测服务的体系结构。这项工作假设一个场景,其中许多分布式天线接收整个城市的车辆产生的数据。在Fog节点中,收集数据,在本地和中间节点中进行处理,最后将其转发到中央Cloud位置以进行进一步分析。我们提出了一种数据分发算法,可应对回程连接问题的弹性以及基于深度学习技术的流量建模方法的组合,以提供分布式流量预测功能。在我们的实验中,我们利用由数千辆车辆组成的道路辅助服务车队在巴塞罗那市产生的一周的浮动车数据(FCD)中的真实交通日志。 FCD在几种模拟条件下进行处理,从在Fog节点中未发生连接故障的情况到具有长期频繁连接中断时间的情况。针对每种情况,分析了数据分发算法和学习方法的弹性和准确性。结果表明,在Fog节点中运行的数据分发过程可以应对回程连接问题,即使存在严重的连接问题,也可以将数据传送到Cloud位置。此外,所提出的流量建模和预测方法在雾中而不是在云中集中分布时表现出更好的行为,特别是当出现连接问题导致数据无法按顺序交付给云时。 (C)2018作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号