首页> 外文会议>Annual Device Research Conference >Can we engineer current saturation in narrow gap graphitic FETs without hurting mobility?
【24h】

Can we engineer current saturation in narrow gap graphitic FETs without hurting mobility?

机译:我们可以在没有伤害移动性的情况下在窄间隙石墨FET中工程师训练吗?

获取原文

摘要

While a wide bandgap material with poor mobility can saturate the output current, we demonstrate a way to achieve clear current saturation in the output characteristics using narrow-bandgap, high mobility graphitic-channels (Fig.4b,4c) without hurting the mobility. Using gate engineering alone, we preserve the intrinsic narrow bandgap but locally cascade them along the channel. This filters intermediate conduction and valence bands and widens the gap in the tranmission (Fig.3) without sacrificing mobility. A widen transmission gap delays the onset of band-to-band tunneling, which normally plagues devices with a narrow bandgap channel. Results are verified using an optimized fully atomistic non-equilibrium Green's Function (NEGF) solver with complex 3-D Poisson. A graphitic channel is used as a template but is one of many possible narrow-bandgap materials with high mobility. Without hurting mobility, the improved current saturation is expected to enhance gain for radio frequency (RF) and potentially digital switching applications by significantly decreasing output conductance(g_(ds)). Graphene's bandstructure imposes a fundamental trade-off between intrinsic bandgap opening and mobility. Various common Group IV and III-IV semiconductors also see this trend (Fig. 1a). Narrow bandgap channels with higher mobility typically lack current saturation in the output characteristics due to source-drain leakage currents. A consequence of poor current saturation or high output conductance(g_(ds)) is poor gain as seen in voltage transfer curve (VTC) in Fig.1b. Gain can be expressed as the ratio g_m/g_(ds), where g_m is the intrinsic transconductance and related to mobility. Our aim is to preserve mobility and g_m while decreasing g_(ds) solely using gate engineering.
机译:虽然流动性差的宽带隙材料可以使输出电流饱和,但是我们证明了一种使用窄带隙,高迁移性石墨通道(图4b,4c)在输出特性中实现明确的电流饱和的方法,而不会损害移动性。单独使用闸门工程,我们保留内在的窄带,但沿着通道局部级联它们。这种过滤器中间导通和价带,并在不牺牲移动性的情况下扩大变化中的间隙(图3)。宽泛的传输间隙延迟了带对频段隧道的开始,通常扰乱具有窄带隙通道的设备。使用具有复杂的3-D泊松的优化的全原子非平衡绿色功能(NegF)求解器来验证结果。将图形通道用作模板,但是具有高移动性的许多可能的窄带隙材料之一。在不伤害移动性的情况下,通过显着降低输出电导(G_(DS))来增强射频(RF)和潜在数字交换应用的提高电流饱和度。石墨烯的乐队结构在内在的带隙开口和移动性之间施加了基本的权衡。各种常见的IV和III-IV半导体也看到了这种趋势(图1A)。具有较高移动性的窄带隙通道通常由于漏光漏电流而导致的输出特性中的电流饱和度。电流饱和度差或高输出电导(G_(DS))的结果是如图1B中的电压传递曲线(VTC)所见的差。增益可以表示为G_M / G_(DS)的比率,其中G_M是内在跨导和与移动性相关。我们的目标是保留移动性和G_M,同时仅使用栅极工程来减少G_(DS)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号