首页> 外文学位 >Performance enhancement in column IV mobility, bandgap, and strain engineered MOSFETs.
【24h】

Performance enhancement in column IV mobility, bandgap, and strain engineered MOSFETs.

机译:IV列迁移率,带隙和应变工程MOSFET的性能增强。

获取原文
获取原文并翻译 | 示例

摘要

Since the introduction of MOSFETs into the integrated circuit (IC), performance has been improved by device scaling. As device dimensions have scaled into the sub-100nm regime, the challenges to device scaling have become increasingly significant and harder to surmount and other methods to complement scaling must be investigated and introduced into the industry. Enhancing carrier mobility can increase drive current. Compressively strained Si1-xGe x and Si1-x-yGexCy provide a means of improving hole mobility, while tensile strained Si enhances both hole and electron mobility. The use of high-k gate dielectrics can increase MOSFET drive current while also increasing the ION to IOFF ratio. HfO2 has gained prominence in the search for a Si-compatible high-k dielectric.; In this work, tensile strained Si1-yCy films and compressively strained, Si1-xGex and S 1-x-yGexCy films were grown via UHVCVD for device and process development studies. A nanometer-scale fabrication process was developed to fabricate sub-100nm PMOSFETs on these films, with both SiO2 and HfO2 being used as gate dielectrics. From these devices it was determined that Si1-xGex can be used in buried channel (with SiO2 gate dielectrics) and surface channel (with HfO2 gate dielectrics) to provide drive current enhancement in deeply scaled devices.; This work demonstrates that higher mobility in Si1-xGe x films can be used to recover the mobility degradation caused by using high-k gate dielectrics. In addition to drive current enhancement, it has been demonstrated that by process optimization, desirable short channel effects can be achieved in these devices. It is also shown that despite drive current enhancement at long channel length, deeply scaled Si1-x-y GexCy PMOSFETs do not provide drive current enhancement over Si. However, they have improved short channel effects.; In recent times tensile strained Si has emerged as a favorable choice to improve carrier mobility and CMOS performance. As part of this work, hot-carrier degradation was studied in tensile-strained Si NMOSFETs. In addition to increased mobility and drive currents, it has been shown that these devices also possess decreased susceptibility to hot-carrier degradation. Simulation and experimental results indicate that this was due to the increased barrier to hot electron injection into the gate.
机译:自从将MOSFET引入集成电路(IC)以来,器件尺寸已提高了性能。随着器件尺寸缩小到100nm以下,对器件缩放的挑战变得越来越重要,并且越来越难以克服,因此必须研究其他补充缩放的方法并将其引入行业。提高载流子迁移率会增加驱动电流。压缩应变的Si1-xGe x和Si1-x-yGexCy提供了一种改善空穴迁移率的方法,而拉伸应变的Si同时增强了空穴迁移率和电子迁移率。使用高k栅极电介质可以增加MOSFET驱动电流,同时还可以提高ION与IOFF的比率。 HfO2在寻找与Si兼容的高k介电材料方面已广受关注。在这项工作中,通过UHVCVD生长了拉伸应变的Si1-yCy膜以及压缩应变的Si1-xGex和S 1-x-yGexCy膜,用于器件和工艺开发研究。开发了纳米级制造工艺以在这些膜上制造亚100nm以下的PMOSFET,同时将SiO2和HfO2用作栅极电介质。从这些器件中确定,Si1-xGex可用于掩埋沟道(具有SiO2栅极电介质)和表面沟道(具有HfO2栅极电介质),以在深尺寸器件中提供驱动电流增强功能。这项工作表明,Si1-xGe x膜中较高的迁移率可用于恢复由于使用高k栅极电介质而引起的迁移率下降。除了提高驱动电流外,还已经证明,通过工艺优化,可以在这些器件中实现理想的短通道效应。还显示出,尽管在长沟道长度处提高了驱动电流,但深度缩放的Si1-x-y GexCy PMOSFET并未提供超过Si的驱动电流增强。但是,它们改善了短信道效应。近年来,拉伸应变硅已成为改善载流子迁移率和CMOS性能的有利选择。作为这项工作的一部分,在拉伸应变的Si NMOSFET中研究了热载流子退化。除了增加的迁移率和驱动电流外,已经证明这些器件还具有降低的对热载流子退化的敏感性。仿真和实验结果表明,这是由于热电子注入栅极的势垒增加所致。

著录项

  • 作者

    Onsongo, David Masara.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号