首页> 外文会议>Pan Pacific Microelectronics Symposium >Maskless deposition technology targets passive embedded components
【24h】

Maskless deposition technology targets passive embedded components

机译:无掩模沉积技术目标被动嵌入式组件

获取原文

摘要

Presently, microelectronic fabrication is dominated by thick film and thin film technologies. Thick film techniques typically use a screen print process to produce features down to about 100 microns wide. Thin film techniques employ masks and photoresists to produce sub-micron features, and are costly and complex. In contrast, Optomec Inc. has developed a process for producing features in the mesoscale range, i.e., from 1 to 100 microns, which avoids many of these issues. This process can deposit electronic materials onto low-temperature, planar and non-planar substrates, without the use of masks or photoresistive deposits. Simpler and less expensive than thin-film techniques, this technology can deposit 25-micron lines of inorganic (and organic) materials onto polymer, glass, silicon, and alumina and other ceramic substrates. The process, Maskless Mesoscale Materials Deposition (M3D), deposits aerosolized particles as small as 20 nanometers in diameter using aerodynamic focusing. The particle beam may be focused down to a 25-micron diameter. Approximately one billion particles per second can be deposited, with accuracies on the order of 25 microns. After the deposition process is completed, the material is decomposed or densified to produce the desired electrical and mechanical properties. Typical thick film techniques deposit materials that must be fired well above 400°C, limiting the process to high-temperature substrates. However, the M3D process is capable of depositing materials onto low-temperature substrates, and then using thermal or laser processing to obtain the desired properties by virtue of the initial precursor chemistry or localized laser heating. Specifically, the M3D process can deposit electronic materials onto low-cost polymer substrates that cannot withstand high-temperature oven fires. The M3D tool will allow manufacturers to integrate many active and passive components into one compact, lightweight, and conformal electronic system. Surface-mount resistors, capacitors, and inductors occupy most of the surface of a typical PWB. The M3D technology can embed these components into the board. By embedding components and reducing interconnect pitch and line widths, a reduction in area of approximately 70 percent may be obtained for today's standard PWB. As a specific example, this capability will allow PWB designers to populate boards with the components required by next-generation wireless devices. Additionally, the M3D process can precisely deposit metal onto non-planar surfaces for flex circuit manufacturing applications. Other applications include bond-pad redistribution, rework and repair of electronic circuitry, custom deposition for under-bump metallization, and custom bump fabrication for flip-chip interconnects.
机译:目前,微电子制造由厚膜和薄膜技术为主。厚膜技术通常使用丝网印刷过程来产生宽至约100微米的特征。薄膜技术使用面罩和光致抗蚀剂来产生亚微米特征,并且昂贵且复杂。相比之下,Optomec Inc.已经开发了一种在Mescle范围内产生特征的过程,即从1到100微米,避免了许多这些问题。该方法可以将电子材料存放在低温,平面和非平面基材上,而不使用面罩或光致抗蚀剂沉积物。该技术可以更简单,更便宜,该技术可以将25微米的无机(和有机)材料沉积在聚合物,玻璃,硅和氧化铝等陶瓷基材上。使用空气动力学聚焦,该方法,无掩模Mescle材料沉积(M3D),将气溶胶颗粒沉积到直径的20纳米。粒子束可以聚焦到25微米直径。每秒约10亿颗粒可以沉积,大约25微米的精度。在完成沉积过程之后,将材料分解或致密化以产生所需的电气和机械性能。典型的厚膜技术沉积物必须脱落超过400°C,将该过程限制在高温衬底上。然而,M3D工艺能够将材料沉积到低温衬底上,然后使用热或激光加工以通过初始前体化学或局部激光加热来获得所需的性质。具体地,M3D工艺可以将电子材料存放在不能承受高温烤箱火灾的低成本聚合物基材上。 M3D工具将允许制造商将许多主动和被动组件集成到一个紧凑,轻质和保全电子系统中。表面安装电阻器,电容器和电感器占据典型PWB的大部分表面。 M3D技术可以将这些组件嵌入到电路板中。通过嵌入组件和减少互连间距和线宽,可以获得当今标准PWB的约70%的面积的减少。作为具体示例,此功能将允许PWB设计人员使用下一代无线设备所需的组件填充板。另外,M3D工艺可以精确地将金属沉积到用于柔性电路制造应用的非平面表面上。其他应用包括电子电路的键合焊盘再分配,返工和修复,用于凸块金属化的自定义沉积,以及用于倒装芯片互连的定制凸块制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号