首页> 外文学位 >Detection of erosion/deposition depth using a low frequency passive Radio Frequency Identification (RFID) technology.
【24h】

Detection of erosion/deposition depth using a low frequency passive Radio Frequency Identification (RFID) technology.

机译:使用低频无源射频识别(RFID)技术检测腐蚀/沉积深度。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents an experimental study both in the laboratory and field to develop and test a method for continuously measuring and monitoring scour using an automated identification technology known as Radio Frequency Identification (RFID). RFID systems consist of three main components, namely (a) the reader which controls the system, (b) the transponder (derived from transmitter/responder) that transmits data to the reader and (c) the excitation antenna that allows the communication between the reader and the transponder.;The study provides an insight into the RFID technology and develops the framework for using this technology to eventually address two central themes in river mechanics and sediment transport; (a) the determination of the active layer thickness and (b) the scour/deposition depth around a hydraulic structure. In particular, this study develops the methodology for relating the signal strength of a radio frequency (RF) device with the distance between an excitation antenna and the RF device.;The experiments presented herein are classified into two main groups, (1) the laboratory and (2) the RF signal vs. the detection distance experiments (field experiments). The laboratory experiments were designed to understand the effect of key RFID parameters (e.g., transponder orientation with respect to the excitation antenna plane, maximum antenna-transponder detection distance), measured in terms of the transponder return RF signal strength for various antenna-transponder distances, transponder orientations with respect to the excitation antenna plane and different mediums in between the excitation antenna and the transponder, on the overall performance of the RFID system. On the other hand, the RF signal vs. the detection distance experiments were based on the results obtained during the laboratory experiments and focused on developing calibration curves by relating the transponder return RF signal strength with the distance between the excitation antenna and a transponder.;The laboratory results show that the dominant RFID parameters affecting the system performance are (a) the transponder orientation towards the excitation antenna plane and (b) the medium type in between the excitation antenna and the transponder. The differences in reading distances were attributed to the transponder inner antenna type, while the effect of the medium was related with the void ratio, where higher porosity materials have, less RF signal strength decay. The parameter that governs the RF signal strength decay was found to be the distance between the excitation antenna and the transponder (erosion process experiments).;The RF signal strength decays almost linearly with distance, while the rate of the RF signal strength decay is controlled by the material type in between the excitation antenna and the transponder (deposition process experiments). The RF signal vs. the detection distance experiments demonstrate that the reading distance of the RFID system can be significantly increased by using a custom made excitation antenna. The custom made excitation antenna not only increases the reading distance between the antenna and the transponder to nearly 20 ft., but also allows the user to manipulate the excitation antenna's shape and size to meet the specific landscape requirements at the monitoring site.
机译:本文提出了一项在实验室和现场进行的实验研究,以开发和测试一种使用称为射频识别(RFID)的自动识别技术连续测量和监控冲刷的方法。 RFID系统由三个主要组件组成,即(a)控制系统的阅读器,(b)将数据传输到阅读器的应答器(源自发射机/应答器)和(c)允许天线之间进行通信的激励天线。这项研究提供了对RFID技术的深入了解,并开发了使用该技术最终解决河流力学和沉积物运输两个中心主题的框架。 (a)确定活性层厚度,(b)确定水力结构周围的冲刷/沉积深度。特别是,这项研究开发了将射频(RF)装置的信号强度与激励天线与RF装置之间的距离相关联的方法。;本文介绍的实验分为两大类,(1)实验室(2)RF信号与检测距离的实验(现场实验)。设计实验室实验是为了了解关键RFID参数(例如,应答器相对于激励天线平面的方向,最大天线-应答器检测距离)的影响,这些参数是针对各种天线-应答器距离的应答器返回RF信号强度进行测量的相对于激励天线平面以及在激励天线与转发器之间的不同介质的转发器方向,取决于RFID系统的整体性能。另一方面,RF信号相对于检测距离的实验是基于在实验室实验期间获得的结果,并着重于通过将应答器返回RF信号强度与激励天线与应答器之间的距离相关联来绘制校准曲线。实验室结果表明,影响系统性能的主要RFID参数是(a)应答器朝向激励天线平面的方向,以及(b)激励天线与应答器之间的介质类型。读取距离的差异归因于应答器内部天线类型,而介质的影响与空隙率有关,空隙率越高,孔隙率越高的材料,RF信号强度衰减越小。发现控制RF信号强度衰减的参数是激励天线与应答器之间的距离(腐蚀过程实验); RF信号强度衰减几乎与距离呈线性关系,而RF信号强度衰减的速率受到控制取决于激励天线和应答器之间的材料类型(沉积过程实验)。 RF信号与检测距离的实验表明,通过使用定制的激励天线可以显着增加RFID系统的读取距离。定制的激励天线不仅可以将天线和应答器之间的读取距离增加到近20英尺,而且还允许用户操纵激励天线的形状和尺寸,以满足监控现场的特定景观要求。

著录项

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Civil engineering.;Hydrologic sciences.;Remote sensing.
  • 学位 M.S.
  • 年度 2012
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号