首页> 外文会议>Latent variable analysis and signal separation >Constrained Complex-Valued ICA without Permutation Ambiguity Based on Negentropy Maximization
【24h】

Constrained Complex-Valued ICA without Permutation Ambiguity Based on Negentropy Maximization

机译:基于负熵最大化的无置换歧义约束复值ICA

获取原文
获取原文并翻译 | 示例

摘要

Complex independent component analysis (ICA) has found utility in separation of complex-valued signals such as communications, functional magnetic resonance imaging, and frequency-domain speeches. However, permutation ambiguity is a main problem of complex ICA for order-sensitive applications, e.g., frequency-domain speech separation. This paper proposes a semi-blind complex ICA algorithm based on negentropy maximization. The magnitude correlation of a source signal is utilized to constrain the separation process. As a result, the complex-valued signals are separated without permutation. Experiments with synthetic complex-valued signals, synthetic speech signals, and recorded speech signals are performed. The results demonstrate that the proposed algorithm can not only solve the permutation problem, but also achieve slightly improved separation compared to the standard blind algorithm.
机译:复杂独立分量分析(ICA)已发现可用于分离复杂值信号,例如通信,功能性磁共振成像和频域语音。然而,对于模数敏感的应用,例如频域语音分离,置换歧义是复杂ICA的主要问题。提出了一种基于负熵最大化的半盲复杂ICA算法。源信号的幅度相关被用来约束分离过程。结果,复值信号被分离而没有排列。使用合成复数值信号,合成语音信号和录制的语音信号进行实验。结果表明,与标准的盲算法相比,该算法不仅可以解决置换问题,而且分离效果略有提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号