首页> 外文会议>Latent variable analysis and signal separation. >Nonnegative Matrix Factorization via Generalized Product Rule and Its Application for Classification
【24h】

Nonnegative Matrix Factorization via Generalized Product Rule and Its Application for Classification

机译:广义乘积规则的非负矩阵分解及其在分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative Matrix Factorization (NMF) is broadly used as a mathematical tool for processing tasks of tabulated data. In this paper, an extension of NMF based on a generalized product rule, denned with a nonlinear one-parameter function and its inverse, is proposed. From a viewpoint of subspace methods, the extended NMF constructs flexible subspaces which plays an important role in classification tasks. Experimental results on benchmark datasets show that the proposed extension improves classification accuracies.
机译:非负矩阵分解(NMF)广泛用作处理列表数据任务的数学工具。本文提出了一种基于广义乘积规则的NMF的扩展,它用非线性一参数函数及其反函数来定义。从子空间方法的角度来看,扩展的NMF构造了灵活的子空间,该子空间在分类任务中起着重要的作用。在基准数据集上的实验结果表明,提出的扩展可提高分类准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号